小编给大家分享关于考研数学 常犯错误分析与总结(共16篇)的范文,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。。 - 素材来源网络 编辑:李欢欢。
以下是小编为大家整理的考研数学 常犯错误分析与总结,本文共16篇,希望对您有所帮助。
篇1:考研数学 常犯错误分析与总结
考研数学 常犯错误分析与总结
在每年接触的考研学生中,会遇到各种各样的问题,下面我们将学生最容易出现问题的几点总结出来。
一、基础不牢。考研数学的定理、公式等很多,而每一道题都由这些定理公式构成,定理公式的不同组合又相成新的题型,在每年的考研真题中大家就可以看出,难题怪题很少几乎没有,考察的多是基础知识,为什么还有那么多的同学成绩不好?基础不牢。为了熟练掌握,牢固记忆和理解所有的定理,公式。一定要先复习所有的公式,定理,然后再大量的练习基础题。做这些基础题时能作到一看便知其过程,心算就能得到其结果,这样就说明真正掌握了基础习题的内容。这些题看起来外表简单,目的单一,但它们主要帮助我们熟悉和掌握定理,公式。但别小看这些习题,如果把整个习题看成一座城堡,定理,公式等可比做砖瓦,而基础习题就可看成砖瓦垒起的一堵墙,熟练掌握一道基础习题就相当于直接拥有一堵墙,这样,构建城堡我们岂不随心所欲,是不是像搭积木一样方便。
二、过于基础。凡事正好,过犹不及。我们知道,打牢基础的目的是为了提高成绩,而不是停留在基础阶段。开始复习的时候以基础为主,在充分掌握基础知识的情况下,就要进行提高练习。
三、没有计划。因为数学科目考查内容非常多,需要同学们在复习之初有个宏观了解,并制定可行的复习计划,避免杂乱无章眉毛胡子一把抓的状态。
四、计划拖延。计划很完美,但是没有按计划执行,那一切都是空想。即使有的同学一开始耽搁了,但只要及时醒悟,不用急时间够不够用,只要你想到了,任何时候都不算晚。当你想到时,确定好自已的大目标,再分割成小块,分步实现。实现这些小目标块时,一定要不折不扣,持之以恒。我们需要合理安排时间,制定出合理的学习计划。但最重要的也是最简单的,要“严格遵守自已的诺言”,克服贪玩,贪睡,懒惰,悲观,消极的思想与习惯。总之,持之以恒的`完成制定的计划是所有方法中最最重要的,也可以说,它是决定个人命运的关键。如果你经常完不成计划,那么就趁早放弃考研吧,考研是很费时间的,一晃就是一年呐。如果你决定一定要考,那么现在就开始来锻炼你的意志力,长跑就是一个简单而有效的方法。不信就试试,如果你能坚持下来,那么考研也十有八九能考出个好成绩。
五、只看不做。这个问题很普遍,尤其是一些证明题类的,很多同学都觉得我看会了,等到真正做题的时候就会发现写不出来……数学做题一大忌就是眼高手低,所以大家一定要看会更要做会,“烂笔头”还是很有效的。
五点注意希望能够给同学们启示,最后,考|研教育网也希望同学们数学高分,考研成功!
精彩链接:
加满正能量 做个better me
精打细算式考研 培育丰硕 “研果”
应届生考研失利后如何规划人生
名师谈 给2014考研同学的几点忠告
篇2:考研数学 常犯五类复习错误总结
考研数学 常犯五类复习错误总结
在每年接触的考研学生中,会遇到各种各样的问题,下面我们将学生最容易出现问题的几点总结出来。
一、基础不牢。考研数学的定理、公式等很多,而每一道题都由这些定理公式构成,定理公式的不同组合又相成新的题型,在每年的考研真题中大家就可以看出,难题怪题很少几乎没有,考察的多是基础知识,为什么还有那么多的同学成绩不好?基础不牢。为了熟练掌握,牢固记忆和理解所有的定理,公式。一定要先复习所有的公式,定理,然后再大量的练习基础题。做这些基础题时能作到一看便知其过程,心算就能得到其结果,这样就说明真正掌握了基础习题的内容。这些题看起来外表简单,目的单一,但它们主要帮助我们熟悉和掌握定理,公式。但别小看这些习题,如果把整个习题看成一座城堡,定理,公式等可比做砖瓦,而基础习题就可看成砖瓦垒起的一堵墙,熟练掌握一道基础习题就相当于直接拥有一堵墙,这样,构建城堡我们岂不随心所欲,是不是像搭积木一样方便。
二、过于基础。凡事正好,过犹不及。我们知道,打牢基础的目的.是为了提高成绩,而不是停留在基础阶段。开始复习的时候以基础为主,在充分掌握基础知识的情况下,就要进行提高练习。
三、没有计划。因为数学科目考查内容非常多,需要同学们在复习之初有个宏观了解,并制定可行的复习计划,避免杂乱无章眉毛胡子一把抓的状态。
四、计划拖延。计划很完美,但是没有按计划执行,那一切都是空想。即使有的同学一开始耽搁了,但只要及时醒悟,不用急时间够不够用,只要你想到了,任何时候都不算晚。当你想到时,确定好自已的大目标,再分割成小块,分步实现。实现这些小目标块时,一定要不折不扣,持之以恒。我们需要合理安排时间,制定出合理的学习计划。但最重要的也是最简单的,要“严格遵守自已的诺言”,克服贪玩,贪睡,懒惰,悲观,消极的思想与习惯。总之,持之以恒的完成制定的计划是所有方法中最最重要的,也可以说,它是决定个人命运的关键。如果你经常完不成计划,那么就趁早放弃考研吧,考研是很费时间的,一晃就是一年呐。如果你决定一定要考,那么现在就开始来锻炼你的意志力,长跑就是一个简单而有效的方法。不信就试试,如果你能坚持下来,那么考研也十有八九能考出个好成绩。
五、只看不做。这个问题很普遍,尤其是一些证明题类的,很多同学都觉得我看会了,等到真正做题的时候就会发现写不出来……数学做题一大忌就是眼高手低,所以大家一定要看会更要做会,“烂笔头”还是很有效的。
五点注意希望能够给考研的同学们一些启示,最后,希望同学们远离这些误区,从基础复习开始走向高分之路!
篇3:考研数学 考试中学生常犯的五种错误
考研数学 考试中学生常犯的五种错误
考研数学 大纲公布前后复习要点
考研数学 从基础抓起 客观题满分必修
2014考研数学 沉下心去做题
2014考研复习:如何提高数学复习效果
结合往届考研同学在考试中出现的问题,考研教育网小编总结同学们在平时复习及考试中可能存在的五个问题:
1、概念不清。概念几乎是一切数学解题的基础,有同学在平时复习中只注重概念的死记硬背,却忽略了对概念的`理解。另外,数学概念众多,久而久之就会出现概念混乱,概念一旦出错,解题就会出现问题。考研 教育\网
2、基本公式理解和掌握得不好,错误地使用公式。基本公式理解和掌握不好,几乎很多同学都会犯这个毛病,基本公式的掌握程度直接表现出考生平时做题的多少,光凭死记硬背是不能加深印象的,一些对基本公式理解和掌握好的同学,必然是通过长时间的训练巩固来的。
3、计算能力差,很多简单的计算却得到错误的答案。针对这个问题,有人认为是做题太少的问题,实际上,这是习惯问题,而且是一种从小就养成的马虎习惯造成的。例如平时做题,有些计算不愿动笔,直接用脑计算,这样势必会有记忆错误的时候,告诫同学们:好记性不如烂笔头。
4、综合运用所学知识分析问题和解决问题的能力较差。对于考查多个知识点的综合性试题,考生往往解答的不好,做不完整,得高分的很少。这是典型的对各章节知识融合的能力不够所致,说明学生在冲刺阶段的复习出现了问题。
5、灵活运用所学知识解决实际应用问题的能力较差。对于经济、生产、生活中的实际问题,要根据所学的基本概念和基本理论进行分析判断,抽象出数学模型才能获得解决。这是很多考生的弱点,因此得分率较低。
针对在历届考生答卷中存在的这些问题,应届考生必须早些开始复习,要按照考试大纲规定的考试内容和考试要求全面系统的复习,掌握核心内容,掌握解题的方法和技巧,把本门课程复习好。前三个问题,一般是考研复习的前两个阶段疏忽所致,后两个问题,重点是冲刺阶段对考研数学出题思路理解不够。
篇4:考研数学 考生常犯五大错误及难点解析
考研数学 考生常犯五大错误及难点解析
一、考试中学生常犯的五种错误
结合往届考研同学在考试中出现的问题,大致总结出同学们在平时复习及考试中可能存在的五个问题:
1、概念不清。概念几乎是一切数学解题的基础,有同学在平时复习中只注重概念的死记硬背,却忽略了对概念的理解。另外,数学概念众多,久而久之就会出现概念混乱,概念一旦出错,解题就会出现问题。
2、基本公式理解和掌握得不好,错误地使用公式。基本公式理解和掌握不好,几乎很多同学都会犯这个毛病,基本公式的掌握程度直接表现出考生平时做题的多少,光凭死记硬背是不能加深印象的,一些对基本公式理解和掌握好的同学,必然是通过长时间的训练巩固来的。
3、计算能力差,很多简单的计算却得到错误的答案。针对这个问题,有人认为是做题太少的问题,但考研辅导专家认为,这是习惯问题,而且是一种从小就养成的马虎习惯造成的。例如平时做题,有些计算不愿动笔,直接用脑计算,这样势必会有记忆错误的时候,告诫同学们:好记性不如烂笔头。
4、综合运用所学知识分析问题和解决问题的能力较差。对于考查多个知识点的综合性试题,考生往往解答的不好,做不完整,得高分的很少。这是典型的对各章节知识融合的能力不够所致,说明学生在冲刺阶段的复习出现了问题。
5、灵活运用所学知识解决实际应用问题的能力较差。对于经济、生产、生活中的实际问题,要根据所学的基本概念和基本理论进行分析判断,抽象出数学模型才能获得解决。这是很多考生的弱点,因此得分率较低。
针对在历届考生答卷中存在的这些问题,应届考生必须早些开始复习,要按照考试大纲规定的考试内容和考试要求全面系统的复习,掌握核心内容,掌握解题的方法和技巧,把本门课程复习好。前三个问题,一般是考研复习的前两个阶段疏忽所致,后两个问题,重点是冲刺阶段对考研数学出题思路理解不够。
二、考研高数考试的重难点分析
考研数学复习,必须按照《数学考试大纲》基本要求去做,考试大纲要求考生比较系统的理解数学的基本概念和基本理论,掌握数学基本方法,要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和综合运用所学的知识分析和解决问题的能力。考研辅导专家结合《数学考试大纲》规定的考试内容和考试要求,粗略地剖析以下本门课程的重点和难点。
1、函数 极限 连续
①正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。②理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。掌握利用两个重要极限求极限的方法。理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限。③理解函数连续性的概念,会判别函数间断点的类型。了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和介值定理),并会应用这些性质。重点是数列极限与函数极限的概念,两个重要的极限:lim sinx/x =1, lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。难点是分段函,复合函数,极限的概念及用定义证明极限的等式。
2、一元函数微分学
①理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的`关系。②掌握导数的四则运算法则和一阶微分的形式不变性。了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。③理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。④理解函数极值的概念,掌握函数最大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平铅直和斜渐近线。⑤了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。⑥掌握用罗必塔法则求未定式极限的方法,重点是导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数。罗必塔法则函数的极值和最大值、最小值的概念及其求法,函数的凹凸性判别和拐点的求法。难点是复合函数的求导法则隐函数以及参数方程所确定的函数的一阶、二阶导数的计算。
3、一元函数积分学
①理解原函数和不定积分和定积分的概念。②掌握不定积分的基本公式,不定积分和定积分的性质及定积分中值定理,掌握换元积分法和分部积分法。③会求有理函数、三角函数和简单无理函数的积分 ④理解变上限积分定义的函数,会求它的导数,掌握牛顿莱布尼兹公式。⑤了解广义积分的概念并会计算广义积分。⑥掌握用定积分计算一些几何量和物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力等。)重点是原函数与不定积分的概念及性质,基本积分公式及积分的换元法和分部积分法,定积分的性质、计算及应用。难点是第二类换元积分法,分部积分法。积分上限的函数及其导数,定积分元素法及定积分的应用。
4、向量代数与空间解析几何
①理解向量的概念及其表示。②掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个 向量垂直、平行的条件;掌握单位向量、方向数与方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法。③掌握平面方程和直线方程及其求法,会利用平面直线的相互关系解决有关问题。④理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。⑤了解空间曲线的参数方程和一般方程;了解空间曲线在坐标平面上的投影,并会求其方程。
5、多元函数微分学
①了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质②理解多元函数偏导数和全微分的概念,会求全微分。③理解方向导数与梯度的概念并掌握其计算方法。④掌握多元复合函数偏导数的求法,会求隐函数的偏导数。⑤了解曲线的切线和法平面及曲面的切平面和法线的概念,掌握二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求多元函数的最大值和最小值及一些简单的应用问题。重点是二元函数的极限和连续的概念,偏导数与全重点是二元函数的极限和连续的概念,偏导数与全微分的概念及计算复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度的概念及其计算。空间曲线的切线和法平面,曲面的切平面和法线,二元函数极值。难点是多元复合函数的求导法,二函数的泰勒公式。
6、多元函数积分学
①理解二重积分与三重积分的概念,了解重积分的性质。②掌握二重积分(直角坐标、极坐标)的计算方法,会计算三重积分(直角坐标、柱面坐标、球面坐标)。③理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系;掌握计算两类曲线积分的方法;掌握格林公式并会运用平面曲线积分与路径无关的条件。④了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。⑤会用重积分、曲线积分和曲面积分求一些几何量和物理量。重点是利用直角坐标、极坐标计算二重积分。利用直角坐标、柱面坐标、球面坐标计算三重积分。两类曲线积分的概念、性质及计算,格林公式。两类曲面积分的概念、性质及计算,高斯公式。难点是化二重积分为二次积分、改换二次积分的积分次序以及三重积分计算。第二类曲面积分与斯托克斯公式。
7、无穷级数
①掌握级数的基本性质及其级数收敛的必要条件,掌握几何级数与p级数的收敛性;掌握比值审敛法,会用正项级数的比较与根值审敛法。②会用交错级数的莱布尼兹定理,了解绝对收敛和条件收敛的概念及它们的关系。③会求幂级数的和函数以及数项级数的和,掌握幂级数收敛域的求法④掌握ex 、sinx、cosx、ln( 1 + x),(1 + x)α的马克劳林展开式,会用它们将简单函数作间接展开;会将定义在 [-L,L]上的函数展开为傅立叶级数,会将定义在上的函数展开为正弦级数和余弦函数。重点是数项级数的概念与性质,正项级数的审敛法,交错级数及其审敛法,绝对收敛与条件收敛的概念。幂级数的收敛半径、收敛区间的求法,将函数展成傅立叶级数。难点是求幂级数的和函数,将函数展成幂级数、傅立叶级数。
8、常微分方程
① 了解微分方程及其解、阶、通解、初始条件和特解等概念;掌握变量可分离方程及一阶线性方程的解法。②会用降阶法解y ( n) =f ( x) ,y″=f ( x ,y) ,y″=f ( y ,y‘)类的方程;理解线性微分方程解的性质和解的结构。③掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的
篇5:盘点:考研数学复习中考生常犯的五大错误
盘点:考研数学复习中考生常犯的五大错误
结合往届考研同学在考试中出现的问题,考研教育网大致总结出同学们在平时复习及考试中可能存在的五个问题:
1、概念不清。概念几乎是一切数学解题的基础,有同学在平时复习中只注重概念的死记硬背,却忽略了对概念的理解。另外,数学概念众多,久而久之就会出现概念混乱,概念一旦出错,解题就会出现问题。
2、基本公式理解和掌握得不好,错误地使用公式。基本公式理解和掌握不好,几乎很多同学都会犯这个毛病,基本公式的.掌握程度直接表现出考生平时做题的多少,光凭死记硬背是不能加深印象的,一些对基本公式理解和掌握好的同学,必然是通过长时间的训练巩固来的。
3、计算能力差,很多简单的计算却得到错误的答案。针对这个问题,有人认为是做题太少的问题,但考研辅导专家认为,这是习惯问题,而且是一种从小就养成的马虎习惯造成的。例如平时做题,有些计算不愿动笔,直接用脑计算,这样势必会有记忆错误的时候,告诫同学们:好记性不如烂笔头。
4、综合运用所学知识分析问题和解决问题的能力较差。对于考查多个知识点的综合性试题,考生往往解答的不好,做不完整,得高分的很少。这是典型的对各章节知识融合的能力不够所致,说明学生在冲刺阶段的复习出现了问题。
5、灵活运用所学知识解决实际应用问题的能力较差。对于经济、生产、生活中的实际问题,要根据所学的基本概念和基本理论进行分析判断,抽象出数学模型才能获得解决。这是很多考生的弱点,因此得分率较低。
针对在历届考生答卷中存在的这些问题,应届考生必须早些开始复习,要按照考试大纲规定的考试内容和考试要求全面系统的复习,掌握核心内容,掌握解题的方法和技巧,把本门课程复习好。前三个问题,一般是考研复习的前两个阶段疏忽所致,后两个问题,重点是冲刺阶段对考研数学出题思路理解不够。
考研教育网预祝全体考马到成功,梦圆!
篇6:考研数学学习心得与总结
考研数学临场答题注意要点
(1)不要粗心大意犯最低级的错误
拿到考卷以后,先把名字及其他试卷要求信息写上,虽然这是最基本的常识,但每年都有不少考生会犯这个低级错误。
(2)浏览整套试卷
将试卷浏览一遍,看看哪些题目自己比较熟悉,哪些题没有思路,这套卷子大概哪部分做起来会比较困难,做到心中有数,以便合理分配时间。
(3)切忌心中发慌
如果这套题看起来有很多陌生的题,也不要心慌。毕竟有些试题万变不离其宗,相信只要做到心中不乱、仔细思考就会产生思路。
(4)合理掌握时间
如果一道考题思考了大约有二十分钟仍然没有思路,可以先暂时放弃这道题目,不要在一道试题上花费太多的时间,导致会做的题反而没有时间去做,那就太可惜了。
(5)学会适当放弃
当确实没有思路的时候要暂时放弃,如果放弃的是一道选择题,建议大家标记一下此题,防止因此题使答题卡顺序涂错,如果时间充足还可再做。
但是,标记要慎重,以免被视为作弊,可以用铅笔标记,交试卷之前用橡皮察去。
(6)确定做题顺序
在做题顺序上可以采用选择、填空、计算、证明的顺序。完成选择填空后,做大题时,先通观整个试题,明确哪些分数是必得的,哪些是可能得到的,哪些是根本得不到的,再采取不同的对应方式,才能镇定自如,进退有据,最终从总体上获胜。
比如说,如果你对概率部分的题比较熟悉,那么这部分的题做题就是有套路,那你就可以先把概率部分做了。通常来说,概率部分是三门课中最简单最好拿分的。其次就是线代了,当然线代两个大题可能有一个难度稍微大一点,另外一个难度相对比较小,那么你可以选择把其中简单一点的,自己有思路的那题先做了。最后再来做高数部分的题,高数一共有5个大题,如果是数一的同学,出现难题通常是在无穷级数,中值定理,曲线、曲面积分,应用题。也就是说高数部分有一道大题是相对简单的,可以先把这道题做了,通常这道题也就是在大题的第一题。就是说,这4道大题,一定要先把分给拿住了。最后再来解决稍微难一点的。当然剩下的几个题,也要有选择性的来做,如果有一点思路的,可以先考虑,完全没有思路的最后处理。
(7)适当运用做题技巧
做选择题的时候,可以巧妙的运用图示法和特殊值法。这两种方法很有效,平时用得人很多,当然不是对所有的选择题都适用。
做大题的时候,对于前面说的完全没有思路的题不要一点不写,写一些相关的内容得一点“步骤分”。
(8)做题要细心
做题时一定要仔细,该拿分的一定要拿住。尤其是选择题和填空题,因为体现的只是最后结果,一个小小的错误都会令一切努力功亏一篑。很多同学认为选择和填空的分值不大而对其认识不够,把主要的精力都放在了大题上面,但是需要引起大家注意的是:两道选择或填空题的分值就相当于一道大题,如果这类题目失分过多,仅靠大题是很难把分数提很高的。做完一道选择、填空题时只需要大家再仔细的验算一遍即可,并不需要一定要等到做完考卷以后再检查,而且这样也不会花费大家很长时间。
(9)注意步骤的完整性
解答题的分数很高,相应的对于考生知识点的考察也更全面一些,有些考题甚至包含了三、四个考察点,因此要求考生答题时相应的知识点应该在卷面上有所体现,步骤过简势必会影响分数。
(10)注意问题之间的联系
好多试题的问题并非一个,尤其是概率题,对于此类考题的第一问一定要引起注意。因为它的第二问,甚至第三问可能会与第一问产生直接或间接的联系,第一问如果答错将会导致第二、三问的错误,那么这道考题的分数就会失分很多。
(11)试卷检查
如果答完考卷,最好是将试卷再仔细的看一遍,看看还有没有落题。然后再将答题卡与选项核对一下,防止顺序涂错。如果不能保证答完以后还有时间,可以在把填空题答完后就核对一下。
(12)书写要整洁
要保持卷面的整洁和美观,以获得“印象分”。字如果写得不好没关系,至少要写得工整,这样批改试卷的老师也会给一定的分数。相反如果自己思路对了,但是写得乱七八糟的很有可能被扣掉小部分分数。
(13)保持良好的心态
不要把自己弄的特别的紧张,就把他当作是一次很平常的考试去对待。数学只有静下心来才能把题答好。如果上来就紧张的不行,那自己本来会做的题,可能对于你来说也是一道难题。这部分其实与前面说的选择做题顺序很有关系,你上来大题就做出了4个,对于你做其它的大题是一种信心上的鼓舞,那其它的题做出来的概率就比较大
篇7:考研数学:试题概况与难度分析
考研数学:试题概况与难度分析
就参加考研的考生最希望了解明年的趋势的话题,老师第一时间讲真题解析放到网上以供学员参考,强调学员在冲刺阶段要将重心转向研读真题,在此为2014考生提供一些复习建议,虽然只有简单的三点,但是如果这三点你都做到了,你的考研数学肯定没有任何问题。
一、试题概况与难度
选择题部分重点考查基本概念、基本性质、基本原理的掌握情况,没有多少运算量,20选择题部分难度不算太大,如等价无穷小、间断点的判定、向量组的等价、相似矩阵的判定、随机变量的分布函数等;填空题部分主要考查基本原理、基本公式、基本运算能力,年填空题运算量相对较大差不多,但是所考查的内容非常基础,基本上小编也都在平时为大家整理过相关复习资料。
大题部分主要考查综合使用数学知识的`能力、逻辑推理能力、空间想象能力、解决实际问题的能力。2013年的数学比较强调运算能力,高等数学部分的综合性显得不够,其中数三与一样考察了一个经济类的应用题,要求学生具备一定的经济背景知识,但是题目难度不大,自以来,2013年在高数的证明题中再次考察了微分中值定理。线性代数部分考查的线性方程组的解与二次型,解题方法比较灵活,计算量相对的少。概率统计部分,数学一和数学三都是概率论和数理统计各考一大题,并且数学三是自以来第一次考察了点估计,与09年之前的出题类似,但是难度不大,只要基本概念与原理清楚,完成这些题目应该不成问题。
整个试卷所考查的内容比较基础,但灵活性与以前相比有所提高。考查的知识点考生只要对基本原理理解到位,有一定的运算能力和综合运用知识的能力,像2013年这样的试卷应该能够取得比较理想的成绩。
二、2013年分数线的情况
全国硕士研究生入学考试试题难度除个别年份外(如和年试题比较容易),尤其是去年的平均分创了历史新高,其实一般而言考研数学难度不会出现大的波动,2013年分数线应该不会高于12年,虽然每年分数线不同,但分数线基本在一定范围内波动,变化不大,平均分可能较去年略有下降。
三、对20考生的数学复习建议
首先,注重基本概念、基本原理的理解,弄懂、弄通教材,打一个坚实的数学基础,书本上每一个概念、每一个原理都要理解到位。像2013年考查的微分中值定理,就是教材上的一个定理,选择题和部分填空题也是考查基本概念和基本原理,基础知识的考查占有相当大的比例,切不可开始就看复习资料而放弃课本的复习。
其次,注重公式的记忆,方法的掌握和应用。填空题部分和一部分大题难度不大,需要能够理解原理,熟悉公式,灵活运用方法。
基础复习阶段非常重要,只要掌握好基础,不管考查什么内容都可以做到游刃有余。
再次,注重综合问题、实际问题,这部分内容是强化阶段重点关注的问题和需要培养的能力,需要大家练习一定量的问题,以达到巩固概念方法和原理、提高所学知识解决问题能力的目的。
考研数学冲刺如何复习,今天就分享到这里,总的来说,数学对考生来说是一门难考的科目,同时也是一门极易拉开分距的科目。在复习的过程中,考生们极容易对数学产生畏难心理,同时要合理规划好冲刺复习重点。最后预祝考生们2014考研成功!
篇8:考研数学 概率论与数理统计难点分析
做好暑期强化 变身数学世界的超人
一直以来概率论与数理统计都是考研数学中的一大难点,考生们的问题也是多种多样。我们的辅导老师通过对历年真题的分析与考生们的反馈,整理出了以下几大难点及常考的几大提醒,希望能有助于数学复习(考|研教育网整理)。
概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。
一、随机事件与概率
重点难点:
重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式
难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算
常考题型:
(1)事件关系与概率的性质
(2)古典概型与几何概型
(3)乘法公式和条件概率公式
(4)全概率公式和Bayes公式
(5)事件的独立性
(6)贝努利概型
二、随机变量及其分布
重点难点
重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布
难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布
常考题型
(1)分布函数的概念及其性质
(2)求随机变量的分布律、分布函数
(3)利用常见分布计算概率
(4)常见分布的逆问题
(5)随机变量函数的分布
三、多维随机变量及其分布
重点难点
重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布
难点:多维随机变量的描述方法、两个随机变量函数的分布的求解
常考题型
(1)二维离散型随机变量的联合分布、边缘分布和条件分布
(2)二维离散型随机变量的联合分布、边缘分布和条件分布
(3)二维随机变量函数的分布
(4)二维随机变量取值的概率计算
(5)随机变量的独立性
四、随机变量的数字特征
重点难点
重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数
难点:各种数字特征的概念及算法
常考题型
(1)数学期望与方差的计算
(2)一维随机变量函数的期望与方差
(3)二维随机变量函数的期望与方差
(4)协方差与相关系数的计算
(5)随机变量的独立性与不相关性
五、大数定律和中心极限定理
重点难点
重点:中心极限定理
难点:切比雪夫不等式、依概率收敛的'概念。
常考题型
(1)大数定理
(2)中心极限定理
(3)切比雪夫(Chebyshev)不等式
六、数理统计的基本概念
重点难点
重点:样本函数与统计量,样本分布函数和样本矩
难点:抽样分布
常考题型
(1)正态总体的抽样分布
(2)求统计量的数字特征
(3)求统计量的分布或取值的概率
七、参数估计
重点难点
重点:矩估计法、最大似然估计法、置信区间及单侧置信区间
难点:估计量的评价标准
常考题型
(1)求参数的矩估计和最大似然估计
(2)估计量的评价标准(数学一)
(3)正态总体参数的区间估计(数学一)
八、假设检验(数学一)
重点难点
重点:单个正态总体的均值和方差的假设检验
难点:假设检验的原理及方法
常考题型
单正态总体均值的假设检验
篇9:考研数学 题型分析与解题方法
考研数学 题型分析与解题方法
考研数学题型分为填空题、选择题、计算题三大类,而每类题型都有自己的特点、复习要点及注意事项,根据多年辅导经验及阅卷经历,现就考生关心的问题从以下三类题型一一分析:首先是填空题。在辅导中我们发现,很多同学填空题失分的原因并不是说真的题型有多难做,而是大家的运算准确率不够。填空题主要是考察基本运算和基本概念,或者说填空题比较多的是计算,这种填空题出的计算题题本身不难,方法我们一般同学都知道,但是一算就算错了,填空题只要是答案填错了就只能给0分。
那么,很多同学要问了,该怎么提高这个运算准确率呢?这里,就要求同学平时复习的时候,不能光看会,就不去算,一定要亲自动手去做!平时对一些基本的运算题,不是说每道题都认真地做到底,但每一种类型的计算题里面拿出一定量进行练习,这样才能提高你的准确率。
同时,由于填空题本身的特点,它是有一些特殊的方法和技巧的。大家在做这种题时如何还是按照常规,有的时候方法不当,本来很简单的题做成了很复杂的题。有些题可以根据几何意义,结果一眼就看出来了,有些题是根据一些特殊的性质。我们在强化班讲课的时候,有意识跟同学做了归纳总结,听过课的同学对这个问题都应该有个总体的了解,这些方面应该是有帮助的。
接下来是选择题,选择题一共有八道题,这个丢分也很严重,这个丢分的原因跟填空题有差异,就是选择题考的重点跟填空题不一样,填空题主要考基本运算概念,而选择题很少考计算题,它主要考察基本的概念和理论,就是容易混淆的概念和理论。
解决办法就是需要同学们重视基础知识。既然,基本理论和基本概念是我们的薄弱环节,就必须在这下功夫,实际上它的选择题里边要考的东西往往就是我们原来的定义或者性质,或者一个定理这些内容的外延,所以我们复习一个定理一个性质的时候,即要注意它的内涵又要注意相应的外延。比如说原来的条件变一下,这个题还对不对,平时复习的时候就有意识注意这些问题,这样以后考到这些的时候,你已经事先对这个问题做了准备,考试就很容易了,平时在复习的`时候要注意基本的概念和理论,本身有些题有难点,但是也不是说选择题有很多有难度的题,一般来说每年的卷子里边八道选择题里面一般有一两道是比较难的,剩下的相对都是比较容易的。
这里还有一个技巧可以告诉大家,我们通常做客观题用直接法,这是用得比较多的,但是也有一些选择题用排除法更为简单,我们考研的卷子里边有很多题用排除法一眼就可以看出结果,所以要注意这些技巧,我们在强化班讲课的时候也给同学做了归纳和总结,我想经过我们的讲解和同学们的努力这个地方应该可以做得很好。
最后来说说计算题。计算题,在卷子里面是占绝大部分,还有一部分是证明题,计算题就是要解决计算的准确率的问题。在考卷里面经常看到同学丢分很重要的原因是运算的准确率比较差,所以对计算题刚才前面已经讲了,基本的运算必须要把它练熟,数学跟复习政治英语不一样,数学不是完全靠背,要理解以后通过一定的练习掌握这套方法,并且一定自己要实践,这个准确率提高不是看书就可以看得出来的,肯定是练出来的,所以要解决计算题准确率一定要通过一定量的练习。还有一类题就是证明题,应该说比较少,如果要出证明题比较多的是整个卷子里面最难的题,那就是难点。这个证明题都是在整个的内容里面经常有几个难点的地方是经常出题的地方,从复习的时候注意那几个经常出难题的地方的题的规律和方法,应该这个地方也不成大的问题。
。篇10:考研数学大纲整体分析与指导
考研数学大纲整体分析与指导
卷种 考试内容 分值比例
数学一 高等数学(或微积分) 56%
线性代数 22%
概率论与数理统计 22%
数学二 高等数学(或微积分) 78%
线性代数 22%
概率论与数理统计 不考
数学三 高等数学(或微积分) 56%
线性代数 22%
概率论与数理统计 22%
从上面的考研数学试卷内容结构我们可以清楚的看到高等数学(或微积分)在考研数学中的分量很大,因此高等数学(或微积分)的重点内容比较多。
通过对全国硕士研究生入学统一考试数学考试大纲的考试内容和考试要求以及考研数学历年真题分析,考研数学的重点和难点总结如下:
高等数学部分:
函数、极限、连续部分,两个重要极限,未定式的极限,主要的等价无穷小,,还有极限存在性的问题和间断点的判断以及它的分类,这些在历年真题当中出现的概率比较高,属于重点内容,但很基础,不是难点,因此这部分内容一定不要丢分。
微分学的部分我们主要还是要掌握一元函数微分学,多元函数微分学考也是考的,但是它的重点还是在一元函数微分学。
一、一元函数微分学需要掌握这几个关系:连续性、可导性、可微性的关系,另外要掌握各种函数求导数的方法,特别注意一元函数的应用问题,这是一个考试的重点。一元函数微分学的涉及面很广,题型非常多,比如说中值定理部分,中值定理部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,零点问题,以及极值和凹凸性。
二、对于多元函数微分学,要掌握几大性质之间的关系,连续性、偏导性和可微性以及一阶连续可偏导的关系,这几个关系一定要搞得很清楚。另外一个就是各种函数求偏导的方法,要分类。还有就是关于多元函数微分学的应用,主要是要注重条件极值,最值问题。
三、积分学部分我们首先要掌握的第一个重点是不定积分和定积分的基本计算、基本计算类型。这个对有些同学来说可能不难,但是想要拿到满分的话还要有一定的基础,尤其要强调一定的计算能力。那么如何使用定积分性质去解决问题这里包含定积分的奇偶性、周期性、单调性以及在特定区间上三角函数定积分的性质。另外定积分的应用是一个重点,主要考虑面积问题、体积问题及跟微分方程相结合的问题。对于要考数学一的考生来说,这个曲线和曲面积分的部分主要掌握格林公式和高斯公式以及曲线积分与路径无关的条件。
四、微分方程与差分方程。差分方程只对数三考生要求,但不是重点。我们在这里讲两个重点,一个重点就是一阶线性微分方程;第二个就是二阶常系数齐次/非齐次线性微分方程。
注:空间解析几何部分,这个只对考数一的同学要求,不是重点。
五、级数问题要掌握两个重点:一、常数项级数性质问题,尤其是如何判断级数的敛散性,二、幂级数,大家要熟练掌握幂级数的收敛区间、收敛半径、和函数以及幂级数的展开问题。
线性代数:
一、矩阵的逆阵和矩阵的秩的问题
二、向量组的线性相关性与向量的线性表示
三、方程组的解的`讨论、待定参数的解的讨论问题
四、特征值、特征向量的性质以及矩阵的对角化
五、正定二次型的判断
概率统计部分(数二不考):
一、概率的性质与概率的公式我们是需要掌握的,这个要需要去熟练地掌握,比方说加法公式、减法公式、乘法公式、条件概率公式、全概率公式以及Bayes公式。
二、一维随机变量函数的分布。这个重点要掌握连续性变量部分。
三、多维随机变量的联合分布和边缘分布及其随机变量的独立性。这个是考试的重点、难点。
四、随机变量的数字特征,这是一个很重点的内容。
五、参数估计。参数估计的点估计法包含矩估计法和极大似然估计,这是一个重点内容。
以上是对考研数学重点、难点的一个简单分析,希望能够对考研的同学起到一定的作用,用有限的时间取得最好的成绩。最后,预祝大家考试成功!
。篇11:考研数学高分心得与总结
考研数学临场答题攻略
策略之一:缺步解答
对一个疑难问题,确实啃不动时,一个明智的解题策略是,将它划分为一个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的语言文字转化成数学语言和相应数学公式,把条件和目标译成数学表达式等,都能得分。而且可望从上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
策略之二:跳步解答
解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底。
如果题目有两问,第一问做不上,可以把第一问当做已知条件,先完成第二问,这叫跳步解答。如果在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
黄金战术原则:六先六后,因人制宜
战术之一:先易后难
就是先做小题和简单题,后做综合题和大题。根据自己的实际,果断跳过啃不动的题目,从易到难解题。但要注意认真对待每一道题,力求有效,不能走马观花,有难就退。
战术之二:先熟后生
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处。对后者,不要惊慌失措,应想到试题偏难对所有考生都难,确保情绪稳定。
对全卷整体把握之后,就可实施先熟后生的战略战术。即先做那些内容掌握到家、题型结构比较熟悉、解题思路比较清晰的题目,让自己产生“旗开得胜”的效果,从而有一个良好的开端,以振奋精神、鼓舞信心,很快进入最佳思维状态,即发挥心理学中所谓的“门槛效应”。之后做一题得一题,不断产生激励,稳拿中低,见机攀高,达到超常发挥、拿下中高档题目的目的。
战术之三:先同后异
就是说,先做同科同类型的题目,思维比较集中,知识和方法的沟通比较容易。考研题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”转移过急、过频的跳跃,从而减轻大脑负担,保持有效精力。
战术之四:先小后大
小题一般信息量少、运算量小,易于把握,不要轻易放过,应争取在做大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理空间。
战术之五:先点后面
近年的考研数学解答题呈现为多问渐难式的“梯度题”,解答时不必一气做到底,应走一步解决一步,而前面的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面。
战术之六:先高后低
即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;如估计两题都不容易,则先做高分题“分段得分”,以增加在时间不足的前提下的得分能力。
与此同时,要求大家审题要慢,解答要快;关键步骤力求全面准确,宁慢勿快。尽量做到内紧外松,既要保持注意力高度集中,又要思想上放得开,沉着应战,确保成功!
考研线性代数核心考点:结合矩阵的计算解行列式
对于抽象型行列式来说,其计算方法就有可能是与后面的知识相结合来处理的。关于抽象型行列式的计算一方面可以利用行列式的性质来计算,这里主要是运用单行(列)可拆性来计算的,这种大多是把行列式用向量来表示的,然后利用单行或者列可拆性,把它拆开成多个行列式,然后逐个计算,这时一部分行列式可能就会出现两行或者列元素相同或者成比例了,这样简化后便可求出题目中要求的行列式。
另一方面利用矩阵的性质及运算来计算,这类题,主要是用两个矩阵相乘的行列式等于两个矩阵分别取行列式相乘,这里当然要求必须是方阵才行。这类题目的解题思路就是利用已知条件中的式子化和差为乘积的形式,进而两边再取行列式,便可得到所求行列式。之前很多年考研中都出现过此类填空或者选择题。因此,此类题型同学们务必要掌握住其解题思路和方法,多做练习加以巩固。
(1)利用单位矩阵的来求行列式,这类题目难度比前面题型要大,对矩阵的相关性质和结论要求比较高。早在1995年数一的考研试卷中出现过一题6分的解答题,这题就是要利用A乘以A的转置等于单位矩阵E这个条件来代换的,把要求的式子中的单位矩阵换成这个已知条件来处理的。
(2)利用矩阵特征值来求行列式,这类题在考研中出现过很多次,利用矩阵的特征值与其行列式的关系来求行列式,即行列式等于矩阵特征值之积,这种方法要求同学们一定要掌握住,课下要多做些练习加以巩固。
篇12:考研数学高分心得与总结
考研数学冲刺的复习策略
1、坚持每天做一定数量的习题,保持题感
很多同学认为到了复习的后期,数学只需要看看以前的错题和不会的题目,扫除盲点即可,这样的想法是大错特错的。我们必须要保证每天做一定数量的习题,保持这样的做题状态一直到考试的前一天。建议同学们每三天做一套数学模拟卷,一天全真模拟,剩下的两天仔细看参考答案解析,并且还要坚持找一些题目来做。这样就可以保证每天都做题目。其实数学是隔一段时间不接触就会很快的遗忘的,三两天不做数学题再做的时候就感觉很生疏,磕磕碰碰,思路不顺畅。这样的状态非常不利于在真实考场上的发挥。考研数学虽然题目不会很难,比较基础,但是有一个特点就是计算量非常大,如果做题的时候不顺手的话,一般很难全部完成所有的考题。坚持每天做数学题,这一点非常非常重要,希望同学们能够重视。
2、以前总结的错题和不会的题目要经常看
前期我们强调过一定要在平时做题的过程中注意把错题和不会的题做好标记,这在复习的冲刺阶段就派上了大用场。因为到后期的时候,时间很紧张,有了错题集,就知道自己哪儿会哪儿不会,知道有限精力应该放在哪儿,后期时间很紧张,不可能再每个题目再过一遍,也没有必要。考研后期有限的精力一定要放在刀刃上,查漏补缺,不能再像刚开始的时候那样面面俱到。对于以前总结的错题和不会的题目,建议最好不要看解答,自己再做一遍。考研数学虽然本质上就是做题再做题,但是在后期的时候没有必要再去搞题海战术,没有必要去找市场上充斥的大量的模拟题,不是什么题目都有质量值得你花宝贵的时间去做。后期把主要精力花在曾经的错题和不会的题目上,扫除盲点,这样更有针对性。
3、把基本概念弄懂,把基本理论弄透
数学的知识体系很庞大,从知识论的角度来讲,它的内在结构很严正,很富有层次感。从概念、定义到公理,从公理到定理、推论,层层演进,步步深入。如果忽视了数学最基础的知识,很多人就可能知其然、不知其所以然,有时候你绞尽脑汁不得其解,很可能只是因为你对某个概念的理解不够透彻。
考研数学需要掌握的知识点并不多,但相互之间联系复杂、千丝万缕,点到点的逻辑关系和深层次的框架结构难于理清。任何一门学科学到一定的高度必然要求你对这门学科的知识结构有一个清晰的轮廓,要站在一定高度对所有内容有一个系统的认识。但是这个认识要建立在对所有的知识点透彻理解的基础上。
所谓把基本理论学透,是从以下几个方面来理解和把握的:首先是概念产生的实际背景是什么,界定此概念所运用到的数学思想和方法是什么。接下来要弄懂这个概念的定义式,包括它的数学含义、几何意义和物理意义,以及在这个概念上的拓展和延伸等等。对于每个概念我们都要尽可能地从这几个方面来理解把握。理论性的内容,比如说定理、性质、推论,首先要清楚它的条件是什么,结论是什么,这是最起码的要求。数学考试实际上就是考察这些定理、推论的运用,只要理解透了,不管出题方式怎么刁钻,你都可以以静制动,以不变应万变。所谓万变不离其宗。
到了后期冲刺的关键阶段,对基本概念和基本知识点的精确透彻理解显得尤为重要,不要留下一个不确定的知识点,在做题的过程中碰到不确定的内容一定要勤于翻书,回到课本上去把它真正的理解和记忆。还有就是一些基本公式,前期做题还可以翻翻书,这个阶段就要真正的牢记了,而且一定要精准的记住,不可以含混不清。
4、保持良好心态,作息规律
最后的阶段,同学们一定要保持平和的心态,要相信自己这么长时间以来的努力,一定能够在考场上发挥自如,取得理想成绩。有些同学感觉压力非常大,所以沉浸在题海当中,每天熬夜到很晚,这种疲劳战术会对复习效率产生非常不好的影响。因为人的精力是有限的,晚上熬夜,白天就不会有精神,要学会怎么把有限的时间合理安排,最优化利用。建议同学们正常作息,同时注意劳逸结合,把自己的状态调整到最佳应试状态。另外,由于数学的考试是在上午,建议同学们把数学的学习时间调到上午,早上8点到11点连续做三个小时的数学题,保持到考试之前。
篇13:考研数学高分心得与总结
考研数学如何研究和用好典型题型
一、面对一道典型例题,在做这道题以前你必须考虑,它该从哪个角度切入,为什么要从这个角度切入。做题的过程中,必须考虑为什么要用这几个原理,而不用那几个原理,为什么要这样对这个式子进行化简,而不那样化简。做完之后,必须要回过头看一下,这个解题方法适合这个题的关键是什么,为什么偏偏这个方法在这道题上出现了最好的效果,有没有更好的解法……就这样从开始到最后,每一步都进行全方位的思考,那么这道题的价值就会得到充分的发掘。
二、学习数学,重在做题,熟能生巧。对于数学的基本概念、公式、结论等也只有在反复练习中才能真正理解与巩固。数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。此外,还要初步进行解答综合题的训练。数学考研题的重要特征之一就是综合性强、知识覆盖面广,近几年来较为新颖的综合题愈来愈多。这类试题一般比较灵活,难度也要大一些,应逐步进行训练,积累解题经验。这也有利于进一步理解并彻底弄清楚知识点的纵向与横向联系,转化为自己真正掌握了的东西,能够在理解的基础上灵活运用、触类旁通。
三、同时要善于思考,归纳解题思路与方法。一个题目有条件,有结论,当你看见条件和结论想起了什么?这就是思路。思路有些许偏差,解题过程便千差万别。考研数学复习光靠做题也是不够的,更重要的是应该通过做题,归纳总结出一些解题的方法和技巧。考生要在做题时巩固基础,在更高层次上把握和运用知识点。对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。
基础的重要性已不言而喻,但是只注重基础,也是不行的。太注重基础,就会拘泥于书本,难以适应考研试题。打好基础的目的就是为了提高。但太重提高就会基础不牢,导致头重脚轻,力不从心。考生要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。一般来说,基础与提高是交插和分段进行的,在一个时期的某一个阶段以基础为主,基础扎实了,再行提高。然后又进入了另一个阶段,同样还要先扎实基础再提高水平,如此反复循环。考生在这个过程中容易遇到这样的问题,就是感觉自已经过基础复习或一段时间的提高后几乎不再有所进步,甚至感到越学越退步,碰到这种情况,考生千万不要气馁,要坚信自己的能力,只要复习方法没有问题,就应该坚持下去。虽然表面上感到没有进步,但实际水平其实已经在不知不觉中提高了,因为在这个时期考生已经认识到了自已的不足,正处于调整和进步中。这个时候需要的就是考生的意志力,考研本来就是一场意志力的比赛,不仅需要丰富的知识和较高的能力,更要有坚强的意志力。只要坚持下去,就有成功的希望。
希望大家在复习过程中要加强考研数学综合解题能力的训练,熟悉常见考题的类型和解题思路,力求在解题思路上有所突破。
篇14:考研数学高分心得与总结
考研数学容易出证明题的知识点
一、数列极限的证明
数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。
二、微分中值定理的相关证明
微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:
1. 零点定理和介质定理;
2. 微分中值定理;
包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。
3. 微分中值定理
积分中值定理的作用是为了去掉积分符号。
在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,所考查的题型。
三、方程根的问题
包括方程根唯一和方程根的个数的讨论。
四、不等式的证明
五、定积分等式和不等式的证明
主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分法。
六、积分与路径无关的五个等价条件
这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。
以上是容易出证明题的地方,同学们在复习的时候重点归纳这类题目的解法。
考研数学二的备考建议
全方位研究典型题型
对于数二的同学来说,需要做大量的试题。即使在初始阶段,数二的很多同学都在对典型题型进行研究,问题在于你如何研究它,我认为应该对典型题型进行全方位立体式的研究。面对一道典型例题,在做这道题以前你必须考虑,它该从哪个角度切入,为什么要从这个角度切入。
做题的过程中,必须考虑为什么要用这几个定理,而不用那几个定理,为什么要这样对这个式子进行化简,而不那样化简。做完之后,必须要回过头看一下,这个解题方法适合这个题的关键是什么,为什么偏偏这个方法在这道题上出现了最好的效果,有没有更好的解法。
就这样从开始到最后,每一步都进行全方位的思考,那么这道题的价值就会得到充分的发掘。学习数学二,重在做题,熟能生巧。对于数学的基本概念、公式、结论等也只有在反复练习中才能真正理解与巩固。数学试题虽然千变万化,其知识结构却基本相同,题型也相对固定,往往存在一定的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。
训练解答综合题
此外,还要初步进行解答综合题的训练。数学二的重要特征之一就是综合性强、知识覆盖面广,近几年来较为新颖的综合题愈来愈多。这类试题一般比较灵活,难度也要大一些,应逐步进行训练,积累解题经验。这也有利于进一步理解并彻底弄清楚知识点的纵向与横向联系,转化为自己真正掌握了的东西,能够在理解的基础上灵活运用、触类旁通。
同时要善于思考,归纳解题思路与方法。一个题目有条件,有结论,当你看见条件和结论想起了什么?这就是思路。思路有些许偏差,解题过程便千差万别。考研数学复习光靠做题也是不够的,更重要的是应该通过做题,归纳总结出一些解题的方法和技巧。
考生要在做题时巩固基础,在更高层次上把握和运用知识点。对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。
做参考书上的题目
考研试题与教科书上的习题的不同点在于,前者是在对基本概念、基本定理、基本方法充分理解的基础上的综合应用,有较大的灵活性,往往一个命题覆盖多个内容,涉及到概念、直观背景、推理和计算等多种角度。因此一定要力争在解题思路上有所突破,要在打好基础的同时做大量的综合性练习题,并对试题多分析多归纳多总结,力求对常见考题类型、特点、思路有一个系统的把握。
解题训练最好按题型进行分类复习,对于任何一个同学而言,都可能有自己很擅长的某些类型的题,相反的,也有一些不太熟悉或者不会做的题型,这在复习的过程中也当有所侧重。
第一遍复习的时候,需要认真研究各种题型的求解思路和方法,做到心中有数,同时对自己的强项和薄弱环节有清楚的认识,第二遍复习的时候就可以有针对性地加强自己不擅长的题型的练习了,经过这样两边的系统梳理,相信解题能力一定会有飞跃性的提高。
篇15:考研数学失败五大原因分析总结
考研数学失败五大原因分析总结
在每年接触的考研学生中,会遇到各种各样的问题,现在将学生最容易出现问题的几点总结出来。
一、基础不牢。考研数学的定理、公式等很多,而每一道题都由这些定理公式构成,定理公式的不同组合又相成新的题型,在每年的考研真题中大家就可以看出,难题怪题很少几乎没有,考察的多是基础知识,为什么还有那么多的同学成绩不好?基础不牢。为了熟练掌握,牢固记忆和理解所有的定理,公式。一定要先复习所有的公式,定理,然后再大量的练习基础题。做这些基础题时能作到一看便知其过程,心算就能得到其结果,这样就说明真正掌握了基础习题的内容。这些题看起来外表简单,目的单一,但它们主要帮助我们熟悉和掌握定理,公式。但别小看这些习题,如果把整个习题看成一座城堡,定理,公式等可比做砖瓦,而基础习题就可看成砖瓦垒起的一堵墙,熟练掌握一道基础习题就相当于直接拥有一堵墙,这样,构建城堡我们岂不随心所欲,是不是像搭积木一样方便。
二、过于基础。凡事正好,过犹不及。我们知道,打牢基础的目的`是为了提高成绩,
而不是停留在基础阶段。开始复习的时候以基础为主,在充分掌握基础知识的情况下,就要进行提高练习。
三、没有计划。因为数学科目考查内容非常多,需要同学们在复习之初有个宏观了解,并制定可行的复习计划,避免杂乱无章眉毛胡子一把抓的状态。
四、计划拖延。计划很完美,但是没有按计划执行,那一切都是空想。即使有的同学一开始耽搁了,但只要及时醒悟,不用急时间够不够用,只要你想到了,任何时候都不算晚。当你想到时,确定好自已的大目标,再分割成小块,分步实现。实现这些小目标块时,一定要不折不扣,持之以恒。我们需要合理安排时间,制定出合理的学习计划。但最重要的也是最简单的,要“严格遵守自已的诺言”,克服贪玩,贪睡,懒惰,悲观,消极的思想与习惯。总之,持之以恒的完成制定的计划是所有方法中最最重要的,也可以说,它是决定个人命运的关键。如果你经常完不成计划,那么就趁早放弃考研吧,考研是很费时间的,一晃就是一年呐。如果你决定一定要考,那么现在就开始来锻炼你的意志力,长跑就是一个简单而有效的方法。不信就试试,如果你能坚持下来,那么考研也十有八九能考出个好成绩。
五、只看不做。这个问题很普遍,尤其是一些证明题类的,很多同学都觉得我看会了,等到真正做题的时候就会发现写不出来……数学做题一大忌就是眼高手低,所以大家一定要看会更要做会,“烂笔头”还是很有效的。
大学网考研频道。篇16:考研数学概率论与数理统计重难点分析
2017考研数学概率论与数理统计重难点分析
2017年的全国研究生入学统一考试刚刚结束,大家对今年各学科的考查重点和命题人出题思路又有什么进一步的认识呢,下面我们就概率论这门学科考查重难点给大家做一个分析。
从以往的经验来说,概率论与数理统计解答题的常见考点有两个,一个是以分布函数为核心的各类随机变量以及随机变量函数的分布,另一个是参数估计。其中前者是数一、数三共同的考查重点,也是难点。后者无论从考查范围和难度上数一、数三都有明显的区别,从范围上讲,数三参数估计部分只考查点估计的两种方法,分别是矩估计和最大似然估计;数一除了点估计之外还涉及到估计量的评选标准等。从难度上讲,数一参数估计部分的难度要略高于数三,主要表现在数一增加了无偏性这一重要考点,且常常与数理统计的`相关定义结合,从而在计算能力上也提出了更高要求。
今年概率论的考查依旧延续往年的出题思路,数学三的第一个解答题考查二维随机变量一个离散、一个连续情况下的分布,考生要利用全概率公式求解概率;第二个解答题依旧是参数估计部分两种点估计方法的考查。这两种题型的解题思路都是我们的学员在课上课下反复训练过的题型,相信在考场上能够很好的发挥。