《圆柱的体积》教学反思

2024-05-22 10:58:03

互汇语录网 给大家分享关于《圆柱的体积》教学反思的范文,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。。

《圆柱的体积》教学反思

《圆柱的体积》教学反思

  身为一名到岗不久的老师,我们都希望有一流的课堂教学能力,通过教学反思能很快的发现自己的讲课缺点,写教学反思需要注意哪些格式呢?下面是小编整理的《圆柱的体积》教学反思,仅供参考,希望能够帮助到大家。

《圆柱的体积》教学反思

《圆柱的体积》教学反思1

  《圆柱的体积》不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。课上,出示课件:等底等高的长方体、正方体、圆柱,学生通过观察,作出猜测:

  (1)圆柱的体积等于长方体和正方体的体积。

  (2)圆柱的体积也等于底面积乘高。

  猜测是否准确呢?点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用教具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。有一种推导过程是我没有预设到的:一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的一半×底面半径×高。我没有否定她的回答,接着又让学生动手实践操作,让学生发现长方体与圆柱之间的联系,利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的'规律,掌握了一种重要的学习方法,转化。

  在本节课的教学过程中还存在诸多的问题。

  1、演示圆柱的体积的时候,因为学生手中没有学具,教师教具的局限性,演示时后面的学生看不清楚。

  2、在圆柱体经过切割、拼接之后转化为近似长方体的时候,应多给后进生留有观察、讨论的时间,他们的思维反应能力比其他学生较慢,应给于他们一定的空间和时间,让后进生也积极参与到课堂的学习中,使全班同学共同进步。

  3、在解决实际问题的时候,不仅要注重公式的应用,还要注意计算能力的培养。

《圆柱的体积》教学反思2

  圆柱的体积计算方法的推导。教学前我就思考,不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。课上,出示挂图:等底等高的长方体、正方体、圆柱,学生通过观察,作出猜测:

  (1)圆柱的体积等于长方体和正方体的体积。

  (2)圆柱的体积也等于底面积乘高。猜测是否准确呢?

  点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用学具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。还有一种推导过程是我没有预设到的:一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的`一半×底面半径×高。首先我对这种方法加以肯定,然后利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的学习方法,转化。

《圆柱的体积》教学反思3

  今天教学“圆柱体的体积”,接受昨天学生提出的只学不会的学习方式,在黑板上分了两个区域,一个复习区域:长方体的体积怎样计算?圆的面积计算公式是怎样推导出来的呢?重点研究区域:圆柱体的体积怎样计算?

  面对复习的问题,学生回答的很好,长方体的体积=长×宽×高,当我指着长方体的底面时,学生就说,长方体的体积=底面积×高。学生对于圆的面积计算公式的的推导记忆犹新,这是很值得我高兴的。面对本课的重点解决问题,我满怀信心(两个复习问题的铺垫,学生会首先想起来把圆柱体按照圆的面积推导过程一样,来等分圆柱体),开始引导学生独立思考,怎样计算圆柱体的体积?正当大家苦思冥想的时候,一只手举得高高的:老师,我想出来一种。又是他,每次回答问题总是第一个举手,把别人的风头都给抢去了,他是一个爱表现的学生,为了不影响其他学生思考,每次我总是压一压他的积极性。给大家留一点思考的时间,等一会再说你的方法,谁知道这个积极分子不容我把话说完,已经拿着自己的圆柱体跑到讲台上了,(哎,让我怎么评价他呢,耐不住性子啊,再稳重一些多好啊?):我是这样想的,这是一个圆柱体的生日蛋糕,我想把它横着切成一个个圆片,分给你们吃。霎时间,下面的同学都笑了,过了一会,一个学生提问:切蛋糕,和圆柱体的体积有什么关系啊?有啊,这个圆柱体蛋糕的体积就是每一个圆片的面积乘上圆片的`个数。这样解释完,下面的学生有的在笑,有的在议论,还有的再思考。我想想了,这是我该出手的时候了:你给大家解释一下,圆片是什么?圆片的个数又是什么?圆片就是圆柱的底面积,圆片的个数就是圆柱的高。

  这种推导圆柱体体积的计算方法,是出乎我意料之外的,因为,解决问题前,已经复习了长方体体积计算方法与圆的面积的推导方法,都是为把圆柱体进行等分转化成长方体体积来推导做铺垫的。谁曾向,这种用堆的过程来说明“底面积×高”计算圆柱体体积的道理,实际是积分思想,这是要到中学才学习的,学生不好理解的,竟然跑到预想方法之前了。真是计划不如变化快啊。课堂上的精彩总是不期而至啊。试想,如果,刚开始他举手,我就像以往一样”压一压他,让他和其他学生同步思考,说不定,这个想法在他脑海里转瞬即逝,那么这个精彩的火花就不会在课堂上呈现。

  由此感悟到,课堂上,要给学生即兴发言的机会,及时的捕捉学生的思维灵感,精彩就会不期而至。《圆柱体的体积》这一课我学到了很多东西。

《圆柱的体积》教学反思4

  本节课主要是引导学生探索并掌握圆柱的体积公式,主要重视了以下几方面:

  1、重视先猜想、再验证的思路来引入教学。

  新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。

  2、重视利用知识、方法的迁移来展开教学。

  本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的.感受。

  3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。

  核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。

  当然,需要注意和改进的地方是:书写格式的规范。

《圆柱的体积》教学反思5

  本节课是在学习了圆柱的体积公式后进行的解决问题。这要求学生对圆柱的体积公式掌握的比较扎实,并要求理论与实际生活相结合。让学生通过经历发现和提出问题、分析和解决问题的完整过程,掌握问题解决的策略。使学生在解决问题的过程中体会转化、推理和变中有不变的数学思想。

  在教学中教学我采用操作和演示、讲解和尝试练习相结合的方法,是新课与练习有机地融为一体,做到讲与练相结合。整节课我采用启发式教学。从导入新授到独立解答问题,环节清晰,教学目的'明确。通过提问引导学生自主研究问题找到重难点,突破重难点。通过2个瓶子的倒置,把不规则的物体转化成规则物体,再来求它们的体积。在进行转化时,让学生明白倒置前空气的体积在倒置后属于哪一部分。倒置前水的体积在倒置后属于哪一部分。不管在倒置前还是倒置后,什么不变,什么变了?要求瓶子的体积实际是求什么?在课堂中学生积极参与,积极思考,小组合作学习。在学习中学习探究氛围高,体现高年级学科特点,并且灵活运用生命化课堂的四自模式、新技术,运用熟练,课堂中使用恰当有效。但在教学时提出的问题应该更简洁明了。在课堂上如何更好地关注中等偏下的学生,我时常为此感到纠结。

  刚刚尝试建构高效的课堂教学范式,难免有困惑和疑问,今后我还要一如继往地与集体备课成员沟通、交流,共同探讨教改新路,让课堂教学更高效、更优质。

《圆柱的体积》教学反思6

  《圆柱的体积》是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。通过教材教学学习后,下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。

  一、在教学过程的设计方面

  1、导入时,力求突破教材,有所创新

  圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的'时间。

  2、新课时,要实现人人参与,主动学习

  学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

  3、练习时,形式多样,层层递进

  例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型: a。已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。

  b。已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。

  c。已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2h。

  d。已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2h。

  e。已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)2h。

  因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。

  二、在教学策略方面

  我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。

  三、在教学技能方面

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。

  四、教学要达到三个目的

  一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。

  二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。

  三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。

《圆柱的体积》教学反思7

  本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。

  一、在教学过程的设计方面

  1、导入时,力求突破教材,有所创新

  圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、

  流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。

  2、新课时,要实现人人参与,主动学习

  学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

  3、练习时,形式多样,层层递进

  例题“练一练”中的.题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型。

  a.已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。

  b.已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。

  c.已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2h。

  d.已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2h。

  e.已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)2h。

  因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。

  二、在教学策略方面

  我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。

  三、在教学技能方面

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。

  四、存在的问题

  不足之处是:由于这节课的设计是以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,所以在学生动手实践、交流讨论和思考的时间上教师应合理把握,不能时间较多,否则会导致练习的时间较少。

  另外,在练习设计上,题形虽然全,但觉得题量偏多,因为这部分练习涉及的计算多、难,这样练习题还需精心设计。

《圆柱的体积》教学反思8

  学案---回忆:长方体的体积怎样计算?圆的面积计算公式是怎样推导出来的呢?重点研究区域:圆柱体的体积怎样计算?

  上课时,学案部分学生回答的很好,长方体的体积=长×宽×高,当我指着长方体的底面时,学生就说,长方体的体积=底面积×高。学生对于圆的面积计算公式的的推导记忆犹新,这是很值得我高兴的。面对本课的重点解决问题,我满怀信心(两个复习问题的铺垫,学生会首先想起来把圆柱体按照圆的面积推导过程一样,来等分圆柱体),开始引导学生独立思考,怎样计算圆柱体的体积?正当大家苦思冥想的时候,高迈把手举得高高的:老师,我想出来一种。又是他,每次回答问题总是第一个举手,把别人的“风头”都给抢去了,他是一个爱表现的学生,为了不影响其他学生思考,每次我总是“压一压”他的积极性。“给大家留一点思考的时间,等一会再说你的方法”,谁知道这个“积极分子”不容我把话说完,(www.fwsir.com)已经拿着自己的圆柱体跑到讲台上了,(哎,让我怎么评价他呢,耐不住性子啊,再稳重一些多好啊?),:我是这样想的,这是一个圆柱体的生日蛋糕,我想把它横着切成一个个圆片,分给你们吃。霎时间,下面的同学都笑了,过了一会,一个学生提问:切蛋糕,和圆柱体的.体积有什么关系啊?“有啊,这个圆柱体蛋糕的体积就是每一个圆片的面积乘上圆片的'个数。”这样解释完,下面的学生有的在笑,有的在议论,还有的再思考。这个时候我用课件利用动画让学生又重温了以上过程。

  整个课堂生动、活泼,学生思维活跃,在动、论、看等过程中学生轻松的掌握了圆柱体积公式。

《圆柱的体积》教学反思9

  在上圆柱体积公式前,我精心备课,准备好教具,课堂上把教给学生,让他们四人一小组,去合作演示,充分讨论探索,我在教室里引导学生总结归纳;圆柱体能拼成近似的长方体,长方体的底面积等于圆柱体的底面积,长方体的高就是圆柱的高。因此,长方体的体积就是圆柱的体积,从而推导出V=sh.学生在课堂中合作十分融洽,我自己也觉得这堂课设计得非常不错,按照备课的程序,接下来就是加深学生对公式的运用、巩固。突然,一双小手高高举起“老师,我有不同方法计算圆柱的体积”我一愣,备课时根本没有考虑到用其它方法;我灵机一动,对,让他说出自己的方法,这位同学用V=ch/2r,即圆柱侧面积的一半乘以底面半径,我当时没有下结论,把这个“球”踢给学生,让他们一起探讨这种说法是否正确;不久学生都异口同声的肯定了。这种新颖的创新思维,课堂上响起了热烈的掌声。

  这堂课后,我的`心久久不能平静,学生独特见解、探索,使我看到学生的创新潜力是巨大的,重在教师的开发、引导。“创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力。”在教学中,孩子们的创新意识常常体现在一些奇思妙想中,有的也许细稚,有的也许太“出格,”但这些却是学生创新精思维的闪现,必须珍惜,这样才能培养出具有创新精神的时代新人。在今后的教学中把充足的探究时间与空间交给学生,改变以教师为主体的传统观念,以学生为主体,教师为主导,让学生成为课堂的真正主人。

《圆柱的体积》教学反思10

  圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的`乐趣。从本节课教学目标的达成来看,较好地体现了以下几方面:

  一、注重知识之间的内在联系。

  圆柱的体积的导入,先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的,并让学生建立起更深层的空间几何概念。

  二、引导学生经历知识探究的全过程。

  数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把柱转化成长方体。那么怎样来切割呢?此时利用生活中的“萝卜”引导学生思考。同学们有了圆面积计算公式推导的经验,经过思考得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。并利用多媒体动画演示,重现推导过程加深学生印象。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程中,认识得以升华(较抽象的认识——公式)。

  三、注重学法指导和数学思想方法的渗透。

  “学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。

  本课中还存在很多不足在例如探究过程中没有充分的给予学生说一说、指一指的时间,在引导学生思考已知圆柱底面半径(r)和高(h)、已知圆柱底面直径(d)和高(h)、已知圆柱底面周长(c)和高(h)三种情况时,教师引导过多,应给予学生更充分的思考空间,让其考虑如果没有底面积,知道哪个条件也可以求圆柱体积。最后,在练习中缺少反馈,学生做完练习后,应及时做到直观反馈,总结优缺点,指导学生做题。

《圆柱的体积》教学反思11

  一、我在导入时,突破教材,有所创新 圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。

  二、我教学新课时,实现人人参与,主动学习 学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的.环境氛围。教学“圆柱的体积”时,由于学校教学条件差,没有更多的学具提供给学生,只是由教师示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。

  三、我在 练习时,形式多样,层层递进 ,例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思。

《圆柱的体积》教学反思12

  学生进行圆柱体积公式探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了个别学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,从而推导出圆柱体积的计算公式。

  非常遗憾的'是学生基本没有亲身参与操作,。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体 ,展示切拼过程.学生虽然没有亲身经历,但也一目了然.

《圆柱的体积》教学反思13

  我进行了圆柱体积的教学,圆柱的体积公式的推倒,需要学生的动手操作或教师教具的操作演示,把圆柱体转化成学过的立体图形长方体,再根据长方体与圆柱体之间的关系推倒出圆柱体的体积。上课前我对学生的动手操作环节进行了思考,学生的学具就既小又直接拼成了长方体,对于学生操作起不到效果,所以就直接用课件演示让学生观察.学生能很快的发现知识,因此推导时间过短,总感觉没有达到效果。学生缺少动手实践,就没有了探究知识的过程,很多的同学可能只是被动的`接受知识。这一次让学具和教具成了教学的绊脚石。

  其次有一个学生大胆猜想圆柱体也有可能转化成正方体,当时讲到转化为长方体时,没有及时处理好这个学生的问题,而是在下一个课时补处理的。对于课堂的灵活掌控也是不够的。在今后的教学中要加强自身对课堂的掌控能力。灵活及时处理课堂中的问题。

《圆柱的体积》教学反思14

  本节课是学生在学习了长方体和立方体的基础上进行教学的,它是一种比较常见的立体图形,学生对圆柱都有初步的感性认识。本节重点是圆柱的`特征和圆柱侧面积的计算。上课伊始,我先组织学生复习圆柱的特征、长方体和正方体体积以及圆的面积计算公式推导过程,由此引出圆柱的体积一课题。为了让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

  反思不足: 1、练习有些少。在学生练习这个环节中,最能反映学生掌握情况。应该再从不同的角度设计多种练习题目来考察学生的知识掌握情况。2、本节课节奏较快,没有去检测一下学生每个环节掌握了没有。3、数学要应用于生活,应该多出些有关生活实际的练习题。

《圆柱的体积》教学反思15

  新课程观强调:

  教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。在实际教学中,如何落实这一理念?本人结合“圆柱的体积”一课谈谈自己的实践与思考。

  [片段一]

  师生共同探究出圆柱的体积计算公式后对公式加以应用。师出示教材例4(苏教版第12册P8):一根圆柱形钢材,底面积是20平方厘米,高是1。5米,它的体积是多少?

  由于课前学生已进行了预习,多数学生是按照教材介绍的解法来解答:

  1.5米=150厘米20×1150=3000(立方厘米)

  师:这道题还有其他结果吗?(学生又沉入了深思)不一会儿,另外两种结果纷纷展现:

  ①20平方厘米=0.002平方米 0。002×11.5=0.003(立方米)

  ②20平方厘米=0.2平方分米 1.5米=15分米 0.2×115=3(立方分米)

  师:为什么会出现三种结果?

  经讨论,学生才明白:从不同的角度去考虑问题,将得到不同的结果。

  [片断二]

  巩固与应用阶段,我将教材练习二中的一个填表题进行了加工组合呈现给学生这样一个表格。

  学生填表后,师:观察前两组数据,你想说什么?

  学生独立思考后再小组交流,最后汇报。

  生1:两个圆柱的高相等,底面积是几倍的关系,体积也是几倍的关系。

  生2:两个圆柱的高相等,底面积越大,体积就越大。

  师:观察后两组数据,你想说什么?

  有了前面的基础,学生很容易说出了后两组的关系。

  学生的表述尽管不是很准确完美,但已说出了其中的规律,而这个规律正是解答练习二第17、18题的基础,又为下一单元“比例”的教学作了提前孕伏。

  [片段三]

  教材的练习中有这样一题:量一个圆柱形茶杯的高和底面直径,算出它可装水多少克?

  学生动手测量自备的.圆柱形茶杯的有关数据并计算它的体积。

  师:水的生命之源。人每天都要饮用一定量的水,请大家课后查阅相关资料,计算自己每天需要饮用几杯水(自己的杯子)才能保证健康,并把自己对水的想法写下来,下节课我们再交流。

  [教学反思]

  精心研究教材是用好教材的基础

  教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

  1、挖掘训练空白,及时补白教材。编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。[片段一] 中的例题教学,就挖掘出了教材中的训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。

  2、找出知识联系,大胆重组教材。数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。[片断二]的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。

  落实课标理念是用好教材的关键

  能否用好教材,关键在于我们的课堂教学是否落实了新课标的理念。关注人是新课程的核心理念。我们的数学教学不能再以学科为中心,而应以学生为出发点和归宿。教材在编写时不可能面面俱到,教师要心里装着学生,使用教材前反复琢磨,怎样的教学才能符合新理念。前两个片段就突破了“学科中心”和“知识中心”,走向了“学生中心”。[片断三]在教材关注学生的基础上向深层发展——不仅让学生动手测量,动脑计算,而且让学生在课外展开调查研究;不仅关注知识技能,而且关注了态度、情感和价值观(对生命之源——水的自我看法)这一片断的教学,其价值就在于渗透了人文关爱。

  学生获得发展是用好教材的标准

  有的教师在教学中常常脱离教材,片面追求新课程的形式,而忽略了实质——“一切为了每一位学生的发展”。每个学生在一节课的40分钟里获得最大发展应作为我们用好教材组织教学的追求。本节课紧扣教材,“以本为本”,着眼学生的发展,无论是知识技能、过程与方法、数学思考还是情感态度价值观,学生都获得了最大发展。

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。