互汇语录网 给大家分享关于《认识方程》教学反思的范文,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。。
《认识方程》教学反思
《认识方程》教学反思(精选11篇)
身为一名刚到岗的教师,我们要在教学中快速成长,教学反思能很好的记录下我们的课堂经验,那么什么样的教学反思才是好的呢?以下是小编为大家整理的《认识方程》教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
《认识方程》教学反思 1
《认识方程 》 是北师大四年级下册第七单元《认识方程》的第三课时。 这一内容是学生第一次接触方程, 对于四年级的学生来说有一定的难度。 因为方程 的意义是一节数学概念课,概念教学是一种理论教学往往会显得枯燥无味,但是方程与 学生的生活又有密切的联系,因此在本课教学中始终注重学生兴趣的培养,让学生感受方程与生活的密切联系。从课前谈话开始,我利用两三分钟与班上学生聊上几句,轻松导入课题,消除彼此之间的紧张心情。在探究方程概念时,我放手让学生自学课本,以天平图,月饼图、 水壶图整节课的主线, 让学生观察情境图, 让学生从这些具体的情境中获取信息, 去寻找隐含的'相等关系 并用自己的语言加以表述,然后尝试用含有字母的等式——方程表示各个相等关系。 让学生亲身体验方程产生的需求,方程在运用中的优越性并成功建立数学模型, 最后总结出方程的意义。
得出概念 后,进入练一练环节,我 设计了两个练习:
一是判断是不是方程的练习,通过学生自己合理判断认识到方程的两个特征缺一不可,弄清等式与方程的区别与联系,加深学生对方程外部特征的印象, 进一步体会方程 的意义,加深了对方程 概 念的理解:
二是设计了根据情境图写出相应的方程 , 借助媒体呈现一些线段图,组织学生根据这些图中的等量关系列出方程。这些题可以培养学生在现实情境里寻找等量关系的能力, 也为以后运用方程 知识解决实际问题打下基础。
查一查的练习是从人类最普遍的日常生活中的衣、食、住、行这四大方面入手,把课本后的练习题套上适当的情景,激发学生学习的积极性,使得学生感受到数学就在自己的身边。最后拓展题,让学生根据所给信息提出问题,列出方程,在较复杂的问题情境中,让学生体会算术方法解决起来比较复杂的问题,可以比较容易地通过方程表示其中的数量关系,体会方程思想的魅力。经历方程建模的全过程,真正让学生理解方程的含义,体验方程思想,引领学生走进方程世界。
不足之处,还是有点紧张,比如学生把等式说成等号老师没有及时纠正,但是学生心理明白的,只是表达时的口误。
总之,整堂课学生的积极性很高,参与度很强,大部分同学都能理解方程的意义, 能用方程表示简单情境中的等量关系。
《认识方程》教学反思 2
《认识方程》这是一块崭新的知识点,对于四年级的学生来说,理解起来也有一定的难度。因此,在教学中我通过创设贴近学生生活的情境来激发学生的学习兴趣,从而使他们愿学乐学,为以后进一步学习方程打下基础。
回顾我的教学,我认为有如下几个特点。
一、科学引导,促进学生的自主学习
在教学方程的意义时我没有采用教材上的材料:而是通过猜想笑笑买学习用品的情境。学生通过猜想,可以列出各种各样的式子,这样放飞学生的思维,培养学生独立思考的能力。而且这样设计也使知识之间的联系更紧密,以便于后续教学活动的进行。
二、合作交流,总结概括
通过猜想得出了30+10×2=50、30+10=40、х+10×2=50、30+х=50、10+х﹤50、30×2=60、10+30+2х﹥50、2×30+2х﹥50等8个式子,接着教师提出能否按照一定的标准对这8个式子进行整理和分类。先让学生自己独立思考,随后再在小组中交流,最后在班级里汇报,选择一种有未知数的、没有未知数的这一类板书在黑板上。然后让学生把х+10×2=50、30+х=50、10+х﹤50、10+30+2х﹥50、2×30+2х﹥50这5个式子进行再次分类,最终得出方程的一类,其他的.一类。从而总结出方程的意义。在此教学过程中,教师应充当一个导游的角色,站在知识的岔路口,启发诱导学生发现知识,充分发挥学生的学习潜能,将有一定难度的问题放到小组中,采用合作交流的方式加以解决,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。
三、回归生活,体会方程
在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。
《认识方程》教学反思 3
小学数学揭示概念的方式有多种,有用图画来揭示概念,有用描述的方法来揭示概念。“含有末知数的等式是方程”,这是用定义的形式来揭示概念。根据方程定义的需要,教学中先教学等式,再教学方程的意义。而所有的教学都离不开天平图,离不开天平平衡的具体情境,这是联系学生数学与生活的纽带。在教学中,我引领学生将现实问题数学化。课中注意从学生已有知识和经验出发,通过师生合作,生生合作,通过观察、分析和比较,在独立思考和交流中,由具体到抽象感受、理解,构建方程的意义。
课后反馈:
与马科长席谈,令我获益匪浅。马科长肯定了我的教学思路,并对课堂上学生的积极发言感到欣喜,对我班学生的小组合作习惯成效,训练有素甚是高兴。(说实在,一直在寻找小组合作的良方,上学期作了些尝试,不过技艺尚不够纯熟、多样),然而提出的以下三点更是让我深思。
1、充分利用“组合拳”。比如说、写、动手操作等等。特写是写,不要满足于学生口头表达正确,其实有时写起来错误百出。是啊,举个小例子:有些汉字我们认识但一写起来,无从下笔,还有课堂上总归能得到正确答案,(不然老师不会放过)但它不表示,人人都知道正确答案,我们时常评讲过一个练习,或让学生重新订正完一份试卷,收上来一看,结果却差强人意,想必原因与此同理。我们的课上应让每个孩子动起来,让他们展示,小黑板、实物投影,十八般武艺,能用尽用上,而不是仅限于口说正确完毕。
2、书本的运用。现在的课堂有一趋势,依赖课件多多,自主发挥创新多多,我也不例外。虽然新课标希望教师用自己的思考解读课本,但课本舍弃不得,它毕竟是优秀的学者的心血之作。是啊,作为一线教师,我们应当挖掘教材价值,不放过一丁点的利用价值,特别到高年级,可借助课本培养学生的自学能力啊。今后的教学,我定会多多注意。
3、细节的处理还可再斟酌。比如等式与方程的`关系教学。此环节什么时候出现?怎样出现?为什么出现?显然我的教学明显操之过急,其实,我也知道,只是上得兴起,太投入了,不自觉的就冒出来了,其实应该在完成练一练的第一题时讨论才好,并适时鼓励学生用自己的方式表达二者之间的关系,真正实现师生、生生之间的互动。现在想起略显遗憾,好在我倒也淡定,因为此生遗憾的事太多了。不过我也要提醒自己:对教材,对学生,千万多思三个“W”即“what、when、why”。
《认识方程》教学反思 4
教学重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;教学目的是进一步掌握列方程解决问题的方法。这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。例1若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。
一、从学生喜闻乐见的事物入手,降低问题的难度。
解答例1这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从学生喜欢的足球入手,引出数学问题,激发学生的学习数学的兴趣,建立学生热爱体育运动的良好情感,又为学习新知识做了很多的铺垫。
二、放手让学生思考、解答,选择解题最佳方案。
让学生当小老师,从问题中找出数量之间的关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的思维空间;然后,我大胆放手,让学生用自己学过的方法来解答例1,最后老师让学生把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的`优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会学生学习方法,比教会知识更重要。
应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,教师敢于大胆放手,让学生观察图画,了解画面信息,白色皮多少块,黑色皮多少块,白色皮比黑色皮少多少等信息,组织学生小组讨论交流,再在练习本上画线段图,然后指导学生根据线段图,分析数量之间的关系,讨论交流解决问题的方法,让学生
成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。
《认识方程》教学反思 5
方程的意义这部分内容是学生初步接触了一点代数知识之后进行教学的,重点是“方程的意义”。设计的意图是想通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。因此本课设计了活动探索、自主分类、抽象概括、灵活运用4个环节,让学生通过观察、分析、抽象、概括,建立起方程的概念,明确方程与等式的关系。
根据儿童思维发展的递进性,设计了三个层次的活动,一是通过学生观察,抽象出相应的数学式子,建立起“平衡—相等、不平衡—不相等”的概念;二是通过自主探索,合作交流的学习方式,使不同能力的学生都得到有效发展;三是引导学生对“等式”观察,将等式分为“含有未知数”和“不含未知数”两类,然后抽象出方程的'概念。最后通过判断与独立创作方程两个学生活动,进一步理解了方程的意义,明确方程与等式的关系。教学实施中的不足之处:教师在教学中用语不够准确精练,对学生的数学语言表达能力指导欠缺,对学生的发言教师倾听程度不够,未能很好把握课堂教学中生成的课堂教学资源。
《认识方程》教学反思 6
现在的小学数学教材十分注意将数学知识与生活实际紧密联系。内容的呈现注意体现儿童的已有经验和兴趣特点,提供丰富的与儿童生活背景有关的素材。如人教版小学数学五年级上册60页,关于警戒水位的问题。
本节课的教学目的是能让学生运用所学知识解决简单的实际问题,感受解简易方程与实际生活的密切联系,使学生初步掌握用列方程的方法解决实际问题的解题思路和方法;会把未知数的值代入已知条件看是否符合;在解方程解决问题的过程中培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的`类推和迁移的能力及养成独立思考的良好习惯。本节课是学生初次利用列方程解决实际问题,对学生来说有一定的难度,上完后,感觉有不少问题存在。
教学例3时,我首先从例题上引导学生读题观察,理解题意,然后指导学生分析题中的数量关系。这时问题产生了,由于这里学生的认知局限性,学生对于什么是湖、大坝,甚至水库,堤坝都不知道是什么,给审题带来比较大的困难,又要重新向学生介绍有关湖泊、水库、堤坝等知识,最后为了让学生更好地理解,我还结合学生常见的鱼塘、塘堤等学生熟悉的情境进行说明,学生才恍然大悟,(教学反思)由此可见,我们提供给学生的情境必须是学生真正熟悉的生活情境,要结合当地学生的认识水平,这才是有效的情境。其次备课一定要深入,不仅要熟悉教材内容、教法、学法,还要深入分析学生已有的知识情况,这样才能备好一节课,要吸取教训。
在交流汇报时,学生说出了如下数量关系:
警戒水位+超出部分=今日水位
今日水位—警戒水位=超出部分
今日水位—超出部分=警戒水位
然后让学生依据数量关系列出相应的方程,这时学生发现例题与之前所学的方程有所不同,之前列方程时题目中未知数已经有了,直接看出x表示那个量,而例题中并没有x,从而引导学生了解到:要列方程必须把其中的未知量假设为x,从实际中让学生发现列方程解决问题时有“设……为x”的必要性,不至于出现在列方程时不写“解:设……”的情况。
但是,在列方程的时候却出现了这样的问题,因为教材只要求掌握“未知数不是减数和除数的方程”解法,在例题教学中,有的学生列出了这样的方程:14.4—x=0.64,从意义上来说,这样的方程肯定是没有问题的,但是应该怎样解呢?是否该向学生讲解方法?如果讲解方法,又该用什么方法来解?或是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的信息:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维不就和现在冲突了吗?迷惑!
《认识方程》教学反思 7
本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。通过这一系列的观察、思考、分类、归纳突破本课的重难点。在这几个环节中有这样几个特点:
1、用天平创设情境直观形象,有助学生理解式子的意思
等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。
2、对方程的认识从表面趋向本质
(1)在分类比较中认识方程的主要特征。在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的`式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。
(2)要体会方程是一种数学模型。“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。
3、在“看”“说”和“写”中体会式子
当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方法。
《认识方程》教学反思 8
“含有未知数的等式是方程”,这句话中包括两个条件,一个是”含有求知数”一个是“等式”。因此,“含有未知数”与“等式”是方程意义的两个重要的内涵。所以在本节课的教学中,就要围绕着这两处条件,设计教学。
一、创设情境,在实际天平的操作中等到等式,并在实际操作中得到方程。
为了加深学生对等式的理解和掌握,采用教科书的设计意图和设计,用天平的平衡找到两边物体质量相等,从而得到等式。为了让我们的设计更贴近我们的生活,直接用我们的粉笔列道具,来称粉笔的重量的过程中得到不等式和等式,含有求知数的'等式(方程)。一步一步,让学生从浅到深,一点一点掌握知识,得到要掌握的知识点。从而学会判断哪些是方程,哪些不是方程。
二、通过比较和断定,从而加深对方程的理解。
断定一个式子是不是方程,要从两个条件入手,一是“含有求知数”二是“等式”,两个条件缺一不可。从而学生互相问,这个为什么不是,哪个为什么不是。含有求知数:5Y不是方程,因为不是等式。5+8=13不是方程,因为没有求知数。所以方程既要是等式又要含有求知数。
X+Y=Z也是方程,因为含有求知数,并且是等式。Y=5也是方程,因为含有求知数,并且是等式。
三、在观察天平平衡列式过程中建立方程的概念,不仅要了解方程的外在特点,更要理解方程的意义。
从判断等式方程到借助现实的相等情境写出方程,由表及里,由浅入深。学生在把实际问题的等量关系用符号化抽象成方程时,不仅感受了方程与日常生活的联系,也体会了方程的本质特征,从而巩固了方程的概念。
《认识方程》教学反思 9
纵观整节课教学,我认为已经基本把握教材的重难点。在讲解“方程的解”定义时,能从验算例子答案出发,让学生体会到“方程左右两边相等”的特征,从而能更好地理解“方程的解”的定义。
在讲授“解方程”定义概念时,我主要从教材思想出发,通过让学生说出采用各自不同的方法求解方程的`解,让学生明白“解方程的各种方法,目的`只有一个,那就是求出解,但不同的方法有自身不同的求解过程”着重让学生理解“求解过程”。
在这基础上,让学生讨论发现两个概念定义之间的区别。
在讲授“解方程:X+7=13”例题时,我安排一个成绩中等的学生上来解答(因为是新课,学生还没有接触过正确规范的书写格式,学生的求解方法和过程步骤,能代表整个班级的情况。况且学生的求解过程能起到反例的作用,为下面比较教学——从对比中认识正确的求解过程做好铺垫)
板书正确书写格式后,让学生通过比较发现该如何正确规范地求解方程的解。
整节课教学存在几点不足:
1、学生课堂练习量少。这与定义的教学花费太多时间有关。
2、对学生新课之前的求解方程的解的方法缺少关注。解方程是可以有很多方法的,需要鼓励学生的多向发散思维。
3、教师课堂上虽然提到“对于一个X的值,它究竟是不是方程的解呢?为什么?”,但还是缺乏相关练习,因为这一内容对理解“方程的解”有极强的意义。
《认识方程》教学反思 10
本课是以天平为形象支撑,结合了具体的问题情境,用式子表示天平两边物体的质量关系,让学生通过观察、分析、写出式子,再通过分类,比较式子的异同,在讨论和交流活动中,由具体到抽象,逐步感受,理解方程的含义。概念的构建过程,并不是由教师机械地传授甚至告诉学生,而是用数学符号提炼现实生活中特定关系的过程。
由于认识水平的局限性,小学生往往把运算中的等号看作是做什么的标志。如在算式3+2的后面写上等号,往往被理解是执行加法运算的标志。他们通常把等号解释为答案是。而实际上,应把等号看作是相等和平衡的符号,这个符号表示一种关系,即等号两边的数量是相等的,也就是在3+2与5之间建立了相等的.关系。本课设计,首先着力帮助学生构建对相等关系和等式的理解,而不是蜻蜓点水般一带而过,从而为后续认识方程,体会列方程是表示现实情境中的等量关系,方程是刻画现实世界的模型,建立良好的基础。
方程,对小学生来说,不仅是形式上的认识,也是感受在解决实际问题过程中建立模型的过程。全课教学过程,教师在出示图的基础上,都是引导学生先用语言描述,即把日常语言抽象成数学语言,进而转换成符号语言。如试一试第二幅图,学生很容易列出形如20-12=x的式子,这样的式子反映的是学生仍然停留于算术思路。让学生先用语言描述图意,从直观的图中抽象出文字语言表述的数量间的相等关系,然后让学生进一步用数学式子表示。在多次经历这样的活动过程中,学生感受到方程与实际问题的联系,领会数学建模的思想和基本过程,顺利实现从算术思维向代数思维的过渡。
《认识方程》教学反思 11
新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的.东西。老教材中解方程的教学是利用加减乘除各部分之间的关系解决的,学生只要掌握了一个加数=和-另一个加数,减数=被减数-差,被减数=差+减数,一个因数=积÷另一个因数,除数=被除数÷商,被除数=商×除数这些关系式,不管是简单的还是复杂的方程都可以用这些关系式去解。而我们新教材却完全不是这种方法,它是利用天平的平衡原理得到等式的基本性质,即等式的两边同时加上或减去同一个数等式不变,和等式的两边同时乘或除以同一个数(0除外),等式不变进行解方程的新教材如果能把天平的规律教学得到位,这样就能把等式性质掌握好,等式性质掌握的好了解起方程来也有规律可循了。于是,我在教学时充分地利用天平实物以及课件让学生深入地理解天平的平衡规律,从而顺利地揭示出了等式的性质。这样在解简易方程时学生很容易掌握方法。知道未知数加(或减)一个数时,只要在方程的两边同时减(或加)同一个数,未知数乘(或除)一个数时,只要在方程的两边同时除(或乘)同一个数即可。一般不会出现运算符号弄错的现象了。
为新课奠定了基础。在突破重难点时,我设计借助天平理解解方程的过程,当学生根据例1图意列出方程X+3=9时,我把皮球换成方格出现在大屏幕上时,问学生:“要得出X的值,在天平上应如何操作?”由于问题提的不符合学生实际学习情况,学生一时不知如何回答。我连忙纠正问道:“天平左边有一个X和一个3,怎么让方程左边就剩下X呢?”学生马上回答:“减去3。”师:“天平右边也应该怎么办?”生:“也减去3.”师:“为什么?”生:“天平的两边同时减去相同的数,天平仍然保持平衡。”我因势利导地使学生学习解方程的方法及书写格式。课堂练习时间也不充裕,致使扩展思维题学生没时间去思考,没有达到预想的课堂效果。一节课虽然结束了,却给我留下了难忘的印象,它将永远警示着我认真钻研教材,备好每一节课。