关于小学六年级数学《用百分数解决问题》教案(通用10篇)

2024-12-15 11:49:38

小编给大家分享关于小学六年级数学《用百分数解决问题》教案(通用10篇)的范文,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。。 - 素材来源网络 编辑:李欢欢。

小学六年级数学《用百分数解决问题》教案(通用10篇)

  作为一名老师,编写教案是必不可少的,编写教案助于积累教学经验,不断提高教学质量。那么优秀的教案是什么样的呢?以下是小编为大家收集的小学六年级数学《用百分数解决问题》教案,仅供参考,希望能够帮助到大家。

小学六年级数学《用百分数解决问题》教案(通用10篇)

  小学六年级数学《用百分数解决问题》教案 1

  教学目标:

  1、掌握求比一个数多百分之几的数是多少的问题。通过对比,使学生沟通分数应用题和百分数应用题的联系和区别

  2、进一步提高学生分析、比较、解答应用题的能力,会求比一个数少百分之的数是多少的问题。

  3、进一步体验百分数与实际生活的紧密联系。

  教学重点和难点

  教学重点:

  掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。

  教学难点:

  正确、灵活地解答这类百分数应用题的实际问题。

  教学过程:

  一、创设情景,生成问题

  老师很高兴和咱们班的同学一起学习关于百分数应用的问题。你们想学么?生说想。好我们先来检验一下你们前面学过的知识。

  教师引导学生看复习题(1)学校图书室原有图书1400册,今年图书册数增加了168册,现在图书室有多少册图书?

  要求学生口答,学生纷纷举手回答。教师肯定学生的表现,接着说如果老师将这道题的条件变为“今年图书册数增加了12%”,应该怎样分析解答呢?同学们想知道么?这节课我们就来研究它。

  板书课题:比较复杂的百分数应用题

  (设计意图:通过谈话的方式复习前面的知识,引入所要学习的新知识,激情的导入,激发了学生探求新知识的热情。学生跃跃欲试急于去学习。)

  二、探索交流,解决问题。

  出示课件

  学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?

  (1)学生默读题。

  (2)教师引导学生观察比较例3与复习题有什么异同?(两道题问题相同,条件不同。)条件不同在哪儿?引导学生多说。

  (设计意图:让学生通过比较明白新旧知识的联系,更容易掌握)

  (3)引导学生思考增加了12%是什么意思,是把谁看作单位“1”。使学生明确今年增加的册数相当于原有册数的12%,现在的册数相当于原有册数的1+12%,即112%。,然后小组合作探讨解题方法。组长记录讨论结果。

  (4)教师巡视指导。参与到学生中间去。

  (5)师生共同交流。各小组派代表说说自己的.解题思路。

  方法1

  方法2

  (6)教师对学生的进行补充讲解。再让学生板演在黑板上。对学生的做题情况进行评价,适时表扬鼓励。

  (7)师生共同总结出两种解答方法。让学生比较一下哪种方法最优。学生纷纷陈述自己的理由。

  (8)比较百分数应用题和分数应用题的区别和联系。

  相同点:数量关系和解题方法完全相同

  不同点:百分数应用题的数量关系用百分数来表示;分数应用题的数量关系用分数来表示。

  (设计意图:让学生经过了思考再进行小组合作更有利于学生的自主学习,体现了新的教学理念并且注意了解题策略的多样化,最优化。)

  三、巩固应用,内化提高

  1、幸福镇去年收粮食300万吨,今年比去年多20%,今年生产粮食多少万吨?

  2、龙泉镇去年有小生2800人,今年比去年减少了0.5%。今年有小学生多少人?

  3、思考:如果例3改成:学校图书室现有图书1568册,比原有图书册数增加了12%,图书室原有多少册图书?(这题单位“1”的量不变,要比较的量也不变,例3单位“1”的量是已知量,这题单位“1”的量是未知量。)

  (设计意图:巩固应用环节让学生从基本应用、综合应用、思维拓展三个层次进行了练习,加深了学生对知识的巩固及迁移。达到灵活运用的目的。)

  四、回顾整理,反思提升。

  今天我们学习了什么知识?解决这类题的关键是什么?

  师述:今天我们学习了比一个数多(或少)百分之几是多少的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。

  百分数应用题和分数应用题的思路和方法是一样的,只不过表示形式不一样而已。

  板书设计:

  例3:方法一:方法二:

  1400+1400×12%1400×(1+12%)

  =1400+168=1400×112%

  =1568(册)=1568(册)

  答:现在图书室有1568册图书。

  小学六年级数学《用百分数解决问题》教案 2

  第一课时

  教学内容:

  求稍微复杂的“求一个数是另一个数百分之几”的应用题(课本第90页的例2及“做一做”)。

  教材分析:

  这部分内容是求一个数是另一个数的百分之几问题的发展,是在求比一个数多(少)几分之几的基础上教学的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件题目中没有直接给出,需要根据条件先算出来。解答求一个数多(少)百分之几的问题,可以加深学生对百分数的认识,提高用百分数解决实际问题的能力。

  教学目标:

  1、知识与技能

  掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。

  2、过程与方法

  通过学习,培养学生利用已有的基础知识,来探索解决新问题。

  3、情感、态度与价值观

  提高学生迁移类推和分析、解决问题的能力。

  教学重点:

  掌握解决此类问题的方法。

  教学难点:

  理解题中的数量关系。

  导学过程

  一、巩固复习

  1、把下面各数化成百分数。

  0.631.0870.044

  2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)

  (1)某种菜籽的出油率是36%。

  (2)实际用电量占计划用电量的80%。

  (3)李家今年荔枝产量是去年的120%。

  二、授新课

  1、根据数学信息提出问题:

  出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。

  (1)计划造林是实际造林的百分之几?

  (2)实际造林是计划造林的百分之几?

  (3)实际造林比计划造林增加百分之几?

  (4)计划造林比实际造林少百分之几?

  2、让学生先解决前两个问提。

  解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。

  3、学生自主解决“实际造林比计划增加了百分之几”的问题。

  (1)分析数量关系,让学生自己尝试着用线段图表示出来。

  (2)让学生说说是怎样理解“实际造林比原计划增加百分之几”的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。)

  (3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。

  方法一:(14-12)÷12=2÷12≈0.167=16.7%

  提问:14-12表示什么?再除以12表示什么?

  方法二:14÷12≈1.167=116.7%

  116.7%-100%=16.7%

  提问:14÷12表示什么?再减去100%表示什么?

  (4)小结解题方法:

  像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。)

  (5)改变问题:问题如果是“计划造林比实际造林少百分之几?”,该怎么解决呢?

  学生列出算式:(14-12)÷14

  (再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。)

  三、巩固练习

  1、独立完成课本第90页“做一做”的题目。

  2、练习二十二第1、2题。

  四、布置作业

  练习二十二第3、4题。

  第二课时

  教学内容:

  教学稍微复杂的“求一个数的百分之几是多少”的应用题。(课本第93页例3和“做一做”)

  教材分析:

  这部分内容教学是求一个数的百分之几是多少的问题。这类问题实际上与求一个数的几分之几是多少的分数乘法问题类似,只是给出的条件以百分之几来表示。由于有相关的分数乘法问题的'基础,所以这里只通过例3教学求比一个数多百分之几的数是多少的问题,其他的求一个数的百分之几是多少、求比一个数少百分之几的数是多少等问题则安排在习题中让学生尝试解决。

  教学目标:

  1、使学生掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。并能正确地解答这类应用题。

  2、感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。

  教学重点:

  掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。

  教学难点:

  正确、灵活地解答这类百分数应用题的实际问题。

  教学过程:

  一、巩固复习

  1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了。现在图书室有多少册图书?

  2、学生找出这道题目的分率句,确定单位“1”,并根据数量关系列式:1400×(1+)

  二、授新课

  1、教学例3

  (1)出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?

  (2)学生读题,找条件和问题,明确这道题是把谁看成单位“1”。

  (3)引导思考:从“今年图书册数增加了12%”这句话中,你能知道些什么?

  ①今年图书增加的部分是原有的12%。

  ②今年图书的册数是原有的120%。

  (4)学生讨论后分小组交流,并独立列式计算:

  方法一:1400×12%=168(册)

  1400+168=1568(册)

  提问:1400×12%表示什么?再加1400表示什么?

  方法二:1400×(1+12%)

  =1400×112%

  =168(册)

  提问:1+12%表示什么?再乘1400表示什么?

  2、通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的百分之几,都要用乘法计算)

  3、巩固练习:完成P93“做一做”第1题。

  三、巩固练习

  1、补充练习。

  (1)出示练习:

  ①油菜籽的出油率是42%。2100千克油菜籽可榨油多少千克?

  ②油菜籽的出油率是42%。一个榨油厂榨出油2100千克,用油菜籽多少千克?

  (2)分析理解:

  A、出油率是什么意思?这两道题有什么相同和不同?

  B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?

  (3)学生独立列式解答。

  2、学生做教科书练习二十二的第1、3、4题。

  小学六年级数学《用百分数解决问题》教案 3

  教学目标

  1、理解生活中百分率问题的含义,掌握求百分率的方法。

  2、理解求百分率应用题的一般结构和求百分率思考过程的主要步骤,提高学生解决问题的能力。

  3、通过解决生活中简单的实际问题,培养学生数学的应用意识。

  教学重点与难点

  重点:会解答求百分率(或一个数是另一个数的百分之几)的应用题。

  难点:对一些百分率的理解。

  教学过程:

  一、回顾百分数意义——直奔课题

  师:同学们前面学习百分数的意义和写法,还学习了百分数、小数和分数的互化,其实,百分数在日常生活中应用非常广泛,人们经常用百分数来解决问题。

  这节课就让我们解决生活中的百分数问题。(板书课题:用百分数解决问题)

  二、探索——解决问题

  (一)教学例1第(1)题

  1、出示信息:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。

  提问:你能提一个求分率的数学问题吗?

  (已达到《标准》的人数占六年级总人数的几分之几?)

  师:谁来解答这个问题?

  生:120÷160=

  师:你知道这个题目真正的问题是什么呢?(出示问题)你们能解决这个问题吗?有什么疑问?(生质疑)师解疑,板书什么是达标率。

  让学生说说六年级的达标率是什么意思?

  怎样解决这个问题呢?(同桌进行交流)

  生:表示已达标的人数占六年级学生总人数的百分之几,六年级学生总人数为单位“1”。

  达标率=达标学生人数÷学生总人数

  师:从这儿,我们就可知道求百分数的方法跟求一个数是另一个数的几分之几是一样的。

  师:请同学们打开书第85页例1的第1部分比较一下,看有什么不同?

  (学生边说老师边板书:)

  生:写法不同,书本写成分数的形式了,而且多了“乘100%”

  师:谁知道为什么要“乘100%”呢?不乘行吗?

  生:因为如果不乘100%,结果是分数的形式;而乘了100%结果就是百分数了。现在知道了什么是达标率,也知道了怎样求达标率,能不能解决这个问题呢?(学生计算)汇报板书

  师:对达标率的计算你还有疑问吗?

  生:0.75×100%怎样计算呀?

  师:问得好,那谁能帮他解决这个疑问呢?

  生:我知道,可以把100%看作1,再把0.75化成75%就可以了。

  生:老师,我不是这样想的,可以把100%中的100乘0.75,“%”照写。

  老师总结:同学们都说得非常好,两种理解方法都可以,你认为哪一种更适合你学习的,你就可以选用那一种。

  (板书: ×100%=0.75×100%=75%)

  师:同学们现在你对求达标率这种问题会了吗?你还有没有不理解的地方?

  (灵活处理)

  (二)教学例1的第(2)题

  解决了达标率问题,下面我们到生物组去看一看。这里有一个还没完成的试验报告。他们遇到什么困难了?什么是发芽率?(师板书)知道了什么是发芽率,怎样计算呢?你又能否像达标率一样把发芽率用公式表示出来?(让同桌带着问题讨论)学生汇报,老师完善板书。

  师:现在分3大组完成这个试验报告并汇报结果,看哪一组最快最好。

  师:你可以为这次试验作个总结吗?

  生:从这次试验可知绿豆的发芽率最高。

  生:我从这次试验可知大蒜的发芽率最低。

  生:我知道花生的发芽率比大蒜的发芽率高。

  (有利于学生对百分数问题的进一步理解与学习。)

  你们知道计算发芽率有什么作用呢?(生答,师小结)

  三、小结运用

  师:同学们对比求达标率和发芽率,你能发现它们有共同的特点吗?

  生:都是两个量比较的结果、都是部分与整体的比较、都要乘100%、都是表示一个数是另一个数的百分之几、公式的分母都是单位“1”等等

  师:同学们发现的`真多,求百分率的问题其实都有一个特点,都是部分量与整体的比较。

  师:其实,现实生活中像达标率、发芽率这样的百分数还有很多很多,你还能举例出其他的百分率吗?试试看。

  学生举例:学生的出勤率、产品的合格率、小麦的出粉率、花生的出油率等等,师板书。这些百分率怎么计算呢?小组同学商量一下。

  学生以4人小组合作写百分率的公式。(组长负责作好记录并汇报。)

  老师这里就有一个求花生出油率的问题,想去看看吗?出示做一做第2题。

  学生做题汇报。

  精明小法官:

  1、学校上学期种了105棵花苗,现在全部都成活,这批花苗的成活率就是105%( )。

  2、王师傅生产的98个零件,全部都检测合格,这些零件的合格率就是98%( )。

  3、25克盐放入100克水中,盐水的含盐率是25%( )。

  4、某工人加工了103个零件,有100个合格,这些零零件的合格是100%( )。

  四、全课总结

  师:同学们,通过这节课的学习,你们有什么收获?

  学生自由回答。

  师:你认为求一个数是另一个数的百分之几(求百分率)应用题的关键是什么?方法又是怎样的?

  小学六年级数学《用百分数解决问题》教案 4

  教学目标:

  1、学生能够尝试用假设法解决连续求“一个数比另一个数多(或少)百分之几”的问题

  2、掌握用抽象“1”解决实际问题的方法。

  教学重点:

  用假设法解决连续求“一个数比另一个数多(或少)百分之几”的问题

  教学难点:用抽象“1”解决实际问题的方法。

  一、创设情境,复习导入

  口答算式。

  (1)100的5%是多少?

  (2)50吨的10%是多少?

  (3)1000元的8%是多少?

  (4)50万元的20%是多少?

  二、探索交流,解决问题

  1、出示例5

  2、分析问题

  (1)已知什么?求什么?

  (2)商品的原价不知道,怎么办?

  3、解决问题

  (1)学生尝试解决

  (2)汇报思路:找好对应关系

  (3)质疑:可不可以将商品原价假设成1?

  (4)验证:发现可以直接假设商品的`原价是1

  4、回顾与反思:在解决问题的过程中,你有什么发现?有什么启示?

  三、巩固应用,内化提高

  1、91页“做一做”第3题

  2、练习十九的9-14题

  四、回顾整理,反思提升

  本节课你学习了什么知识?你有什么收获?

  小学六年级数学《用百分数解决问题》教案 5

  一、说教材

  1、教材分析

  这节课的教学内容是本册书第五单元用百分数解决问题的第二课时,具体是百分数应用题中“求比一个数比另一个数多(或少)百分之几”的两步计算应用题。本节课的教学目的就是让学生在已学过的分数三类基本应用题基础上,理解和掌握百分数应用题中的数量关系,会解答求一个数比另一个数多(或少)百分之几的应用题。从而进一步提高学生分析解答应用题的能力。

  2、教学目标

  ①、使学生进一步理解和掌握百分数应用题中的数量关系,会解答求一个数比另一个数多(或少)百分之几的应用题。

  ②、通过自主探究,合作交流,探索解决问题的有效方法,体验解决问题方法的多样化,发展学生的思维。

  ③、通过解决生活中的实际问题,培养学生的应用数学意识,进一步体验数学与生活的紧密联系。

  3、教学重点、难点

  会解答求一个数比另一个数多(或少)百分之几的。应用题。

  二、说学法

  1、为了实现教学目标,突出重点,解决难点,利用学生已学过的分数三类基本应用题探究解决问题的方法。

  2、采用此种方法的目的在于通过提出问题,画出线段图分析数量关系,找出解决问题的方法,让学生亲身体验知识形成的过程,获得基本的数学知识和技能,从而激发学生的学习兴趣,增加学生学好、用好数学的信心。

  3、从“一题多解”的探究过程中,主动参与知识的形成,提高学生思考问题、解决问题的能力。

  三、说教法

  本节课的内容是在前面第一、二单元学习分数乘法、除法一步应用题基础上进行的继续学习,是一节新旧知识联系密切的教学内容。因此,我认为教师为学生创识一种问题背景下的探索活动,使学生在一种动态的探索过程中自己提出问题,发现解决问题的方法,从而体验成功的快乐,感受数学的思想方法。基于这一点,我以让学生根据条件,提出问题,分析应用题中的数量关系,找出不同的解法为教学重点,创识一种“复习-探究-应用”教学形式,以“自主学习”贯穿课中,引导学生迁移旧知,大胆尝试,突出学生的学习过程。

  四、说教学过程

  1、利用旧知,导入新课

  首先我通过给出“5是8的几分之几,5又是8的百分之几”和“8是5的几分之几,8又是5的`百分之几”与“甲数是50,乙数是40,甲数比乙数多几分之几?乙数比甲数少几分之几?”两道题目,复习解决百分数的问题可以依照解决分数问题的方法。同时说明更换单位“1”结果是不一样的。

  然后,出示“一个乡原计划造林12公顷,实际造林14公顷,实际造林是原计划的百分之几”,条件相同,只是问题不一样,为学生后面的学习做好准备。

  2、讲授新知

  ①、出示例题的条件:“一个乡去年原计划造林12公顷,实际造林14公顷,实际造林是原计划的百分之几?”教师提出:根据你自己的理解,可以提出什么问题,这样去激发学生兴趣,调动学生的思维活动,从而得出不同需要解答的问题,此时在教师的引导下,把所提的问题归纳成本节课所要讲的内容,紧接着放手让学生独立解答,得出不同的解法,学生互相对照,探讨研究,总结方法,教师再给以指点和总结,然后再练习,及时巩固所学的知识。

  设计意图,利用新旧知识的密切关系,使学生在提出问题解答问题的过程中,比较自然地在头脑中进行了比较-探究-总结的过程,学生实际能力不一,提出的问题可能不够准确,甚至是错误的,我认为这并不重要,重要的是学生利用自己已有的知识及经验进行了一次有意义地探索过程。

  ②、新知识的应用

  练习的目的:练习是理解知识,掌握知识形成基本技能的基本途径,同时又是运用知识、提高能力,形成知识结构的重要步骤,让学生通过不同层次的练习,得到不同层次的收获,使学生在思维能力有所发展,增加用数学的意识。

  3、结尾:让学生说一说通过这节课的学习自己的收获与存在的问题。

  小学六年级数学《用百分数解决问题》教案 6

  教学目标

  1、使学生掌握求一个数比另一个数多(少)百分之几的应用题

  2、在解答求一个数是另一个数的百分之几的应用题及分数应用题的基础上,通过迁移类推,提高学生分析解答应用题的能力

  3、培养学生自主探索能力和探索精神,联系生活实际培养学习数学的兴趣

  教学重难点

  使学生掌握求一个数比另一个数多(或少)百分之几的应用题

  教学关键

  1、抓住单位“1”分析数量关系

  2、抓住新旧知识联系,将“比”字句转换成“是”字句

  教学过程

  一、创设情境 提出问题

  1、师引入:同学们现在我们最关心的就是竞赛了,昨天老师在抄写数学竞赛名单时,发现根据名单信息可以提几个有关百分数的数学问题,你们想不想也来试试。

  2、出示信息:

  六(4)班 女 8人 男12人

  六(6)班 女 10人 男11人

  学生提问题,老师选择问题呈现

  (1)男生人数是女生人数的百分之几?

  (2)女生人数是男生人数的百分之几?

  (3)男生人数比女生人数多百分之几?

  (4)女生人数比男生人数少百分之几?

  ……

  3、师:如果给这4个问题分类,你会分成哪几类,依据是什么?

  分两类:一类是谁是谁的百分之几

  一类是谁比谁多百分之几

  师:我们把谁是谁的百分之几称为是字句,谁比谁的百分之几称为比字句,是字句我们前节课学过,谁来解答

  学生口头回答

  小结:a÷b×100%=百分数

  4、师:谁比谁多百分之几,我们还没有研究过,这节课我们就来研究这个问题,揭题:用百分数解决问题

  二、探究新知 构建模型

  (一)教学例题

  1、师:你们能把“比”字句改成“是”字句吗?

  学生改写:男生比女生多的人数是女生人数的百分之几。

  女生比男生少的人数是男生人数的百分之几。

  2、师:求男生人数比女生人数多百分之几与男生比女生多的人数是女生人数的百分之几之间有什么关系,我们该怎么理解这句话呢,让我们一起来画线段图。

  师生齐说,课件展示

  过程:先画什么(单位“1”)

  再画……得出求男生人数比女生人数多百分之几就是求男生比女生多的人数是女生人数的百分之几

  师:求男生人数比女生人数多百分之几,你们能解答吗?只列式不计算

  指名学生回答:预设学生:

  生1:学生可能会直接列式

  (12-8)÷8

  教师提问:先求什么再求什么

  (先求出男生比女生多的人数,再求出多的人数是女生的百分之几)

  师:是不是这样我们一起来看看线段图

  师生结合线段图分析数量关系

  生2:还有其他方法吗?

  学生独立完成

  12÷8=1.5=150% 150%-100%=50%

  提问:先求什么再求什么 100%表示什么?

  (先求出男生人数是女生人数的.百分之几,再把女生人数看作1也就是100%,用男生人数是女生的百分之几减去100%,就是男生人数比女生多的百分之几)

  (二)试一试

  师:同学们表现不错,接下来试试这题

  学生独立完成

  (12-8)÷12 100%-8÷12×100%

  (三)对比质疑

  师:完成两题之后,你有什么想问的吗?为什么第一道除以8,第二道除以12,引导得出:单位“1”

  师:这两题中有没有相同点

  相同点:都是男生与女生比,都是求相差的百分率

  不同点:单位“1”不同

  比较算式还发现:

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。